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1. Introduction 

Comprehensive and in-depth understanding of complex dynamic induced behavior of 

structures usually requires the performance of numerically and laboratory experiments. This is 

especially important in the case when the dynamic behavior of the structure is strongly 

influenced and determined by the presence of water. Usually, the models are scaled versions of 

a real full-size structure. Scaling the real structure to a size desired and convenient for a 

laboratory test follows some well-known laws about geometric, kinematic and dynamic 

similitude. 

This work presents an attempt to study numerically the relation between the dynamic 

characteristics of a real structure and a small-scale model, as well as to identify the influence of 

water density on the natural frequencies. The aim is to understand if the relation between the 

natural frequencies of the real structure and its scaled model remains the same as in the 

proposed similitude law and how it is influenced by the water density.  

2. Physical modeling 

A thin-walled steel vertical-axis cylindrical tank, anchored at the 

base is adopted, Fig. 1. It has a simple geometry but exhibits 

complex vibration behavior. Geometry: height of the tank 

(H=15.79m); water depth (h=14.63m); radius (R=27.42m); mean 

wall thickness (32.16mm). Material properties of the steel: Young 

modulus (2.1*1011N/m2); Poisson ratio (0.3); Density (7850kg/m3). 

Material properties of water: Density (1000kg/m3); Sonic velocity 

(1447m/s) at 100C. 

3. Theoretical prediction and finite element analysis 

The accepted approach consists in application of the classical geometric scaling law. This law 

is usually derived in textbooks by employing the method of dimensional analysis [1] and 

requires that all scaled dimensions are proportional. Strictly speaking, it also is required that 

the Poisson’s ratios be the same if two different materials are used: ν2=ν1, where the subscripts 

1 and 2 designate both similar structures. In experimental model work, this condition is often 

relaxed if Poisson’s ratios are approximately equal or equal when structure 1 and 2 are built 

from the same material. 

The natural frequencies of structure 2 are then related to the natural frequencies of structure 

1, as proposed in [2], by: 

 

 

where ρ is the mass density, E is Young’s modulus, c is the speed of sound, and α is a typical 

length or width dimension of the structure.  

To obtain the natural frequencies numerically a finite element simulation was performed 

within ANSYS(R) software environment, [3]. Following the general principles of the FEM for 

discretization of complicated structures, the numerical model was generated, Fig. 2. Crucial for 

the numerical analysis is the selection of suitable elements, since it directly influences the 

computational time and accuracy of the results. 
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4. Results and discussion 

To validate the model approach established in 

ANSYS environment, a comparison was made 

between the fundamental frequency extracted 

numerically for the case of an empty and 

water-filled tank, incl. sloshing and impulsive 

mode, and the one calculated by a particular 

formula [2,4], as well as with that given in [5,6]. 

The results showed a good match. 

Further, the natural frequencies of the 

adopted real tank were numerically extracted. 

The same analysis was performed for the 10 times smaller scaled model (the scale factor was 

arbitrarily chosen). According to Eq. (1) the natural frequencies of the small scaled model are 

expected to be 10 times bigger than those of the real tank under the condition of scaling all 

structural parameters. The expectation was confirmed 

by the numerical analysis, and the results regarding 

the impulsive mode of the water-filled tank obtained 

by ANSYS are shown in the table. 

5. Conclusion 

The frequencies, extracted by numerical simulation, of a real scale and small scaled model of 

the adopted water-filled cylindrical steel tank confirmed the expected theoretically determined 

result and relation, i.e. the scale factor in Eq. 1.  So, utilizing the small model, that represents 

the scaled geometrically analog of the real structure, allows to obtain the dynamic 

characteristics of the real structure by dynamic experiments. The results showed that strictly 

following of the geometry scaling law, Eq. 1, has not demanded any changes of the fluid density 

between the real and small-scale models. The scaling law, Eq. 1, however, proved to be 

sometimes too restrictive since it was not always convenient, for instance, to scale the wall 

thickness in proportion to typical surface dimensions. That is essential especially in the case of 

laboratory tested thin-walled fluid-structure models, where the rigorous application of the scale 

law may lead to structurally impossible geometry that would endure local deformation and 

buckling even before performing the laboratory dynamic test. 

In that case, varying the density of the fluid would allow to keep the wall thickness within a 

structurally reasonable dimension and thus to model the actual dynamic characteristic of the 

structure. Task for future research is to perform laboratory tests to establish and verify the 

relation between the fluid density, scaled model geometry and the dynamic characteristics of 

the real full-scale structure in case when the geometry scaling law could not be strictly applied, 

i.e. the wall thickness of the real structure is thin and its scaling in accordance of the law is not 

possible. The established relation would be useful for the proper design and carrying out of 

dynamic tests in laboratory conditions, especially regarding the dynamic-induced behavior of 

structures where neither the structure nor the fluid alone govern the response, and which are 

highly sensitive to frequency characteristics of the dynamic excitation.  
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