FRP シートと側壁基部アンカーの併用による水路トンネルの補強効果 Combined reinforcing effect by FRP sheet and sidewall anchor for aqueduct tunnels

○石井 将幸*, 上野 和広*, 小森 篤也**, 堀越 直樹***, 西須 稔*** ISHII Masayuki, UENO Kazuhiro, KOMORI Atsuya, HORIKOSHI Naoki and NISHISU Minoru

1. はじめに

トンネル覆工頂部周辺の背面空洞に起因する 水路トンネルの変状への対策として,この空洞 を充填する手法の有用性が広く認識されるよう になった。しかしひび割れの原因となっている 引張応力を解消するためには,充填した箇所か ら覆工へ背面土圧に即した荷重が伝わることが 必要であり,すべての充填工法でこれを実現で きるわけではない。また充填部からの荷重はス プリングライン周辺の引張応力を軽減する一方, 頂部周辺の圧縮応力を増大させる。頂部付近の 覆工が設計より薄くなっているトンネルが存在 しており,空洞の充填だけでは十分な安全性を 確保できない事例があると推察される。

そこで本研究では、水路トンネルの内面にす だれ状の FRP ストランドシートを貼り付ける 補強方法と、これに加えて側壁基部に鉄筋アン カーを打ち込む手法の有用性を評価するために、 載荷試験と数値解析による検討を行なった。な お本研究は、官民連携新技術開発事業「無筋コ ンクリート水路トンネル覆工に最適化した補強 工法の開発」において行われたものである。

試験の概要

載荷試験は, Fig.1 に示す標準馬蹄形の供試体 を対象として実施した。供試体の厚さ(トンネ ル軸方向の長さ)は 0.3m である。FRP ストラ ンドシートによる内面補強の有無,また基部ア ンカーの有無を変えて試験を行い,荷重の大き さと変形量やひずみの値を測定した。FRP シー トとアンカーの物性値,並びに補強量は Table 1 のとおりである。シートによる内面補強は,イ ンバートを除くアーチ部と側壁部に対して行な っている。コンクリートの圧縮強度は 3.71MPa,

◆→:載荷位置と荷重の方向
Fig.1 載荷試験の試験体と載荷の概要
Outline of loading test and specimen

Table I 補加 に用いていて物が下して補加

Materials used for reinford

Waterials used for remoreement				
材料	弾性	引張・降	站 政县	
	係数	伏強度	佣加里	
FRPシート	245GPa	3400MPa	覆工厚の 0.4%	
アンカー	200GPa	345MPa	D16 を各1本	

弾性係数は23.6GPaである。

載荷は Fig.1 に示す 4 方向から油圧ジャッキ で実施した。10kN ずつ荷重を増やしながらひび 割れの発生や進展の状況を観察し,さらに最大

 Table 2 載荷試験によるひび割れ荷重と破壊荷重

 Cracking and maximum loads obtained by loading tests

FRP	基部	ひび割れ	动声声
シート	アンカー	発生·進展荷重	収壊何里
無	無	60kN	90kN
有	無	120kN	200kN
有	有	120kN	220kN

の荷重である破壊荷重を測定した。

試験で得られた荷重を Table 2 に示す。なおシ ートなどで補強した供試体は、あらかじめ Fig.1 のものと同等の荷重で破壊してから、ひび割れ 補修と補強を行ったものである。そのため Table 2 に示すひび割れ荷重は、無補強の供試体につ いては初期ひび割れ荷重,補強した供試体につ

* 島根大学学術研究院, Academic Assembly, Shimane University *** 日鉄ケミカル&マテリアル(株), Nippon Steel Chemical & Material Co., Ltd. **** オリエンタル白石(株), Oriental Shiraishi Corporation キーワード: 水路トンネル,内面補強,破壊解析 いては補強後に加えた荷重で新たなひび割れが 生じた荷重である。シートとアンカーのそれぞ れに補強効果が認められ,両者の併用にも効果 があることがわかる。供試体の破壊モードは, 無補強の場合は曲げ破壊,FRP シートで補強し た場合は側壁基部アンカーの有無によらず,シ ートの剥離破壊であった。

3. 載荷試験の FEM 解析による再現

FRP ストランドシートと側壁アンカーの補強 効果を再現する目的で、3 次元 FEM 解析を実施 した。用いたプログラムは ATENA 3D で、コン クリートのひび割れや鉄筋の降伏、またシート の破断を考慮可能なものである。Table 1 に示す 物性値を用いるとともに、FRP ストランドシー トの異方性を表現するためシートの表現には面 要素を用いず、線要素を間隔 60mm で配置した。 トンネル軸方向の要素サイズは約 100mm であ るため、トンネル内面に並ぶすべての要素は FRP 線要素によって補強される。

この解析プログラムは,適切な設定を行なう ことでシートの剥離を考慮することが可能であ る。しかし剥離に関するパラメータが得られて いないため,シートの強度を実際より下げ,剥 離の代わりに降伏を生じさせることによって, 剥離現象を模擬することとした。

降伏ひずみを変化させることで得られた破 壊荷重を Table 3 に示す。降伏ひずみをある程度 以上大きくしても破壊荷重が頭打ちになること と,解析結果と試験結果の整合性を踏まえて, 降伏ひずみの値を 4500 µ とした。これは実際の 破断ひずみや引張強度の 0.32 倍に相当する。

Ultimate load obtained for different yielding strain			
破断ひずみ	破壊荷重	破断ひずみ	破壊荷重
1500 μ	135kN	3500 μ	169kN
2000 µ	150kN	4000μ	173kN
2500 μ	158kN	4500 μ	173kN
3000 µ	161kN	5000 μ	173kN

Table 3 シートの降伏ひずみと破壊荷重

4. 側壁基部アンカーの補強効果

Table 2 に示したように, FRP ストランドシートと側壁基部アンカーを併用した供試体の載荷

試験では、シート単体より高い補強効果が得ら れた。そこで無補強、シート単体補強、アンカ ー単体補強、シートアンカー併用補強の4とお りについて解析を行い、破壊荷重の値を求めた。 Table 4 に示すように、アンカー単体では補強効 果があまりみられない一方、併用補強の補強効 果は、単体補強の補強効果の合計より大きい。 トンネル内面のシート補強によって側壁基部に 集中する変形を、基部アンカーによって効果的 に拘束できるためであると考えられる。

載荷試験で用いた供試体の厚さは 300mm で Table 4 FEM で求めたシートとアンカーの補強効果

Reinforcing effects by sheet and anchor by FEM analysis

シート	アンカー	破壊荷重	補強効果
無	無	101kN	
有	無	173kN	72kN
無	有	105kN	4kN
有	有	214kN	113kN

あるため、これは実際のトンネルに 300mm 間 隔でアンカーを設置した場合に相当する。アン カーの間隔による補強効果の違いを検証するた めに、長さ 3m 分のトンネルを対象とし、シー トアンカー併用補強を想定した解析を行なった。

得られた結果を Table 5 に示す。なお破壊荷重 は Table 4 の値と直接比較できるように、トンネ ルの長さ 0.3m あたりの値に換算されている。

想定したアンカー(SD345, D16)では間隔 を 1m 未満まで小さくしないと顕著な補強効果 が得られないことがわかる。しかし表には示し ていないが,間隔が大きい場合でも併用補強の 効果は単体補強の効果の合計を上回った。より 太い鉄筋を使用することで間隔が大きい場合の 補強効果も向上できると推察され,内面シート 補強と側壁基部アンカーの組み合わせの有用性 が示されたと考えられる。

Table 5 アンカーの間隔と破壊荷重

Ultimate load obtained for different spacing of anchors			
アンカー 間隔	破壊荷重	アンカー 間隔	破壊荷重
3.0m	128kN	0.75m	143kN
1.5m	135kN	0.5m	150kN
1.0m	139kN	0.375m	158kN