ドローン吊り下げ型電磁探査システムによる比抵抗マッピング

Resistivity mapping by a drone-borne electromagnetic exploration system

〇光畑裕司 · 横田俊之 Mitsuhata Yuji · Yokota Toshiyuki

1. はじめに

ループ・ループ法あるいはスリングラム法 と呼ばれる電磁探査法は、送信ループと受信 ループを用いて、地面に非接触で地盤の比抵 抗分布を求める手法である(図1)。本手法は, 送信ループから発生する変動磁場の影響で地 盤内に, 比抵抗に応じて誘導電流(渦電流)が 発生する。その誘導電流から新たに磁場が発 生し、それを受信ループで受信する。その受信 信号から、地盤の比抵抗を推定する原理とな っている。

図1 電磁探査法の基本原理の概念図¹⁾ Fig.1 Conception diagram of the principal of electromagnetic (EM) method.

近年、多数の周波数の電磁場を同時に発生 し、周波数依存による深度方向への探査を行 うマルチ周波数固定式小型ループ電磁探査シ ステム²⁾が利用されており、これまで土壌汚染 現場での地盤調査,塩水性地下水の調査,河川 堤防の脆弱部調査等で適用された事例が報告 されている。また最近では、農地の土壌電気伝 導度迅速調査や水田の塩分濃度変化の調査. 森林での土壌環境調査等、土壌・農学分野での 適用が報告されている²⁾。本報告では、マルチ 周波数固定式小型ループ電磁探査システムを 使用した農地での適用事例を紹介し、さらに システムをドローンで吊り下げて飛行しなが ら計測し、比抵抗分布のマッピングを実施し

(国研) 産業技術総合研究所 地質調査総合センター Geological Survey of Japan, AIST キーワード:地下水、土壌、農地保全、農地環境

た事例を報告する。

2. 沿岸域塩水性地下水調查事例3)

本研究で使用する電磁探査システムは、米 国Geophex社製のGEM-2(図2)である。GEM-2は 旧型は330Hzから48kHZ,新型では300Hzから 96kHzの周波数範囲の電磁場を、同時に10周波 数程度、送受信可能となっている。

図 2 GEM-2 システムによる測定の様子¹⁾ Fig. 2 Field measurement by GEM-2 system.

本システムを用いて、房総半島東部の九十 九里平野に位置する千葉県山武市の農地で. 海岸から台地に向けて、GEM-2を携行し図2の ように1測点ずつ立ち止まって計測した事例 を図3および図4に示す、畑地は高比抵抗、水田 は低比抵抗を示し、海岸側の水田の地下には 塩分の高い地下水の存在が示唆されている。

Fig. 3 Profiles of GEM-2 data measured across paddy and dry fields.

図4 平滑化データプロファイルから逆解析により推定された比抵抗断面図³⁾. Fig.4 Resistivity cross section estimated by 1-D inversion of the smoothed data profile.

これは,浜堤平野形成時に堤間湿地に残された塩水あるいは,今なお,用水路を通じて満潮時に遡上する海水が浸透しているものかもしれない。

3. ドローン吊り下げ型電磁探査システム

ドローンを活用した空中撮影や地形測量は 一般に実施されており、また磁気センサーを 吊り下げた地下の探査も実用化されつつある。 GEM-2センサーを吊り下げた埋没車両の探査⁴⁾ も報告されているが、今回、同じシステム(図 5)を用いて、飛行計測実験を、農研機構の実 験圃場にて実施した。長さ200mの測線を5m間 隔で9測線設定し、飛行計測実験を実施した。

図6に6周波数のデータから推定した準備段 階の比抵抗分布を示す。畑地と水田の水分量 に起因する違いが明瞭に捉えられている。

図5 ドローン吊り下げ型電磁探査システム. Fig.5 Drone-borne EM system.

5. おわりに

ドローンの活用は、広範囲なエリアを効率 良く計測するのに有望な手法と成り得る。 今後,検証実験を繰り返し,信頼性向上を図る 予定である。

図 6 深度 1m での比抵抗分布. 点線はドローンの飛行経路を示す. Fig.6 Resistivity distribution at the

depth of 1m. Dotted curves denote the traces of flight.

謝辞: (国研) 農研機構 黒田清一郎氏,石島 正人氏には実験圃場での実験に際し,ご協力 頂きました。ここに記して感謝致します。

参考文献:

- 光畑裕司,稲崎富士(2008),地質ニュース, 644,14-24.
- 物理探査学会(2016),物理探査ハンドブック増補 改訂版,物理探査学会,527-529.
- Mitsuhata, Y., et al. (2006), Geophysics, 71, B167-B173.
- https://www.aist.go.jp/aist_j/press_release/ pr2017/pr20170605/pr20170605.html