水撃作用を利用した漏水波の非破壊・非接触検出 Non-Destructive and Non-Contact Detection of Water Leakage Waves using a Water Hammer Phenomenon

○木津和樹*, 萩原大生**, 北野原朋宏***, 本間順***, 鈴木哲也**** ○Kazuki KITSU*, Taiki HAGIWARA**, Tomohiro KITANOHARA***, Jun HONMA*** and Tetsuya SUZUKI****

1. はじめに

パイプラインは、合理的な水配分が可能で あるといった利点から、幅広い分野で利用さ れている.近年パイプライン事故は増加傾向 にあり、定量的な診断法の開発が喫緊の課題 である.筆者らは、3次元画像解析を用いて 実構造物における水撃圧発生時の管材変形 の同定を検討している¹⁾.本研究では、画像 解析によって水撃圧発生下における漏水の 有無を非破壊・非接触で検出することを目的 とする.

2. 実験·解析方法

モデルパイプライン実験にて、漏水現象の検 出を試みた.対象のパイプラインについて、全 長は約 65 m、放流口と自由水面までの高低差 は約 7.74 m である.使用したパイプラインは、 外半径 57 mm、管厚 6.6 mm の VP 管である. 放流口から約 0.6 m 地点にボールバルブが設置 されており、実験ではバルブを開閉することで 圧力波を発生させた.実験を開始するにあたっ て、ボールバルブより 3.60 m 上流に縦 80 mm, 横 55 mm の画像解析面を作成した.解析用の 画像は、撮影間隔を 20 Hz に設定した CCD カ メラで撮影した (Fig. 1).撮影されたステレオ 画像に対し、デジタル画像相関法による 3 次元 画像解析を行った.画像解析における評価パラ メータは周方向変位である.

3. 水撃圧の周期および管体の固有振動

発生した水撃圧は,一定の周期性をもって パイプラインを往復する.水撃圧の周期は式 (1)によって求めることができる.

$$T = \frac{4L}{a} , \qquad (1)$$

ここで,*T*:水撃圧の周期(s),*L*:反射端ま での距離(m),*a*:圧力伝播速度(m/s)で ある.計算の結果,本パイプラインにおける 水撃圧の周期は1.70 Hz と算出された.

管体には特に顕著な振動が見られる周波数

^{**}新潟大学大学院自然科学研究科 Graduate School of Science and Technology, Niigata University

^{***}大林道路株式会社 Obayashi Road Corporation

^{****}新潟大学自然科学系(農学部) Faculty of Agriculture, Niigata University

キーワード:パイプライン,漏水現象,非破壊検査,画像解析,水撃圧

帯が存在しており,固有振動と呼ばれる.本 検討では,固有振動に着目した解析を行っ た.管体をはりと仮定した場合,n次の固有 円振動数は式(2)で求めることができる²⁾.

$$\omega_n = (n\pi)^2 \sqrt{\frac{EI}{\rho NL^4}},$$
 (2)

ここで、 ω_n : n 次の固有円振動数 (Hz)、E: 縦 弾性係数 (N/mm²)、I: 断面二次モーメント

(mm⁴), ρ :単位体積重量(kg/mm³),N:はりの断面積(mm²),L:区間長(mm)である.n次の固有振動数 f_n は式(3)で算出される.

$$f_n = \frac{\omega_n}{2\pi} \,. \tag{3}$$

画像解析面を含む直線部(Fig. 2)をはりと仮 定して計算した結果,1次および2次の固有振 動はそれぞれ1.67 Hz, 6.67 Hz と算出された.

結果および考察

Fig.3に、水圧および周方向変位の周波数解 析結果を示す.対象区間はバルブ閉塞5秒前か ら25.6秒間である.グラフ内の青線は1.70Hz を示し、水撃圧の周期で卓越した成分が確認さ れた.赤線はそれぞれ1.67Hzおよび6.67Hz を示しており、管体の固有振動付近で周波数成 分が強く検出された.Fig.4に示したスカログ ラムでも、水撃圧及び固有振動付近の周波数帯 で卓越した成分が検出された.また、いずれに おいても漏水の有無で比較した場合、漏水有り のケースの方が方が漏水無しのケースよりも 減衰過程の時間が短いことが確認された.

5. おわりに

本研究では、管体の周方向変位に着目して 漏水の検出を試みた.その結果、水撃圧発生 に伴い固有振動付近で卓越した成分が検出 されること、漏水の有無による減衰の傾向が 水撃圧と固有振動で一致していることが確 認された.このことから、管体振動に着目す ることで、漏水現象を非接触で検出できる可

能性が示唆された.

引用文献

- 木津 和樹(2022):デジタル画像相関法を用いたポンプ On-Off 制御による管材変形の非破壊同定,第71回農業 農村工学会講演会要旨.
- 国井 隆弘 (1995):よくわかる構造振動学入門,工学出 版株式会社, pp. 60-70.