灌漑用管水路で生じる地震時動水圧の数値シミュレーション

Numerical simulation of seismic hydrodynamic pressure in an irrigation pipeline system

O萩原 大生* 大久保 天* 南雲 人* 池上 大地*

oTaiki Hagiwara*, Takashi Ohkubo*, Hitoshi Nagumo*, and Daichi Ikegami*

1. はじめに

地震時の管水路内では、水と管体の相対 速度に伴う動的な圧力として地震時動水圧 が発生することが確認されている¹⁾.管水 路の地震時動水圧について、その実態が不 明であったことから、管水路の設計や維持 管理にその影響は十分に考慮さていない. 地震時動水圧の発生により、管内水圧は設 計の許容範囲を超える可能性があり、空気 弁の被害が報告されている.地震時動水圧 の評価は、適切な施設の維持管理および設 計において不可欠な情報のひとつである. 本報では、既設管水路における管内水圧と 地震動加速度の常時計測データに基づき、 数値シミュレーションにより現象の再現と 実態評価を試みた結果について報告する.

2. 計測方法

既設管水路を対象に,管内水圧と地震動 加速度の常時計測を行った.対象施設は畑 地灌漑の管網水路とした.Fig.1 に対象施 設の模式図を示す.常時計測の装置は,空 気弁室に設置した.水圧センサは空気弁か ら分岐した枝管に取り付けた.加速度セン サは,空気弁室底のコンクリート基礎の上 に取り付けた.対象施設では異なる管径と 管厚を諸元とする管が用いられている.計 測位置の空気弁直下の本管では,管径が 350 mm,管厚が5 mm,管材はダクタイル 鋳鉄である.上流にはFRPM管も存在して いる.地震動加速度は東西,南北および上 下の3 方向を計測した.管内水圧および地 震動加速度について,100 Hz で計測した.

3. 解析方法

弾性体理論に基づく非定常流況の運動方 程式および連続式ならびに先行研究²⁾を参 照し,管水路内の地震時動水圧の基礎式を 与える.地震動の影響を考慮した運動方程 式を(1),連続式を(2)に示す.

$$g\frac{\partial H}{\partial x} + \frac{\partial V}{\partial t} + V\frac{\partial V}{\partial x} + \frac{f}{2D}V|V| - \alpha = 0 \quad (1)$$
$$\frac{c^2}{g}\frac{\partial V}{\partial x} + \frac{\partial H}{\partial t} + V\left(\frac{\partial H}{\partial x} + \sin\theta\right) = 0 \quad (2)$$

ここで、Hはピエゾ水頭(m)、Vは管内平 均流速(m/s)、Dは管径(m)、gは重力加 速度(m/s²)、cは圧力伝播速度(m/s)、 θ は 水路勾配である. α は地震動加速度の管軸 方向成分(m/s²)であり、東西・南北・上下 方向の座標系に対する管軸の方向余弦と加 速度ベクトルの内積により求める. なお、 式(1)の $V \cdot \partial V / \partial x$ と式(2)の $V(\partial H / \partial x + \sin \theta)$ について、本計算では省略した. 解析条件 として、時間ステップは 0.0005 s、空間ステ ップは対象管水路の各位置における圧力伝 播速度と時間ステップの関係からクーラン 数が1となるように設定する. 管水路の本 管に対し、上流のファームポンドから下流 まで管軸方向の1次元でモデル化している.

4. 結果および考察

常時計測により得られた地震動加速度を Fig. 2 に示す. 2016 年 1 月 14 日に浦河沖で 発生したマグニチュード 6.7 の地震動によ る計測結果を表している. Fig. 2 (a) ~ (c) に, 地震動加速度の 3 成分の実測値を示す. なお, これらには 0.1 Hz ハイパス処理を行

^{*} 寒地土木研究所 Civil Engineering Research Institute for Cold Region キーワード:地震時動水圧,灌漑用管水路,数値シミュレーション,非定常流況,管網

っている. Fig.2 (d) に,実測値3成分に 基づく計測位置直下の本管の管軸に沿った 地震動加速度の管軸方向成分の計算値を示 す. 地震動加速度に伴う地震時動水圧と数 値シミュレーション結果を Fig.3 に示す.

Fig. 2 (d) の管軸方向成分の地震動加速度 をもとに、ピエゾ水頭の変動が計算されて いる.検討結果では、変動の立ち上がりに ついて実測値を概ね再現している.減衰に ついては、マニング式より求めた摩擦損失 係数を 30 倍させることにより表現してい る.エネルギー損失の影響を摩擦損失係数 に計算上で負担させている.既設管水路の エネルギー損失としては、継手部の漏水や 管内の劣化、泥の堆積といった様々な要因 が挙げられる.今後、減衰の影響要因の特 定と計算モデルへの反映が不可欠と考える. 5. おわりに

本研究では,灌漑用管水路内にて発生す る地震時動水圧を常時計測により検出し, 数値シミュレーションによる再現を検討し た.水圧変動の減衰に影響する摩擦損失係 数を増加させて計算することで,地震時動 水圧の実測値を概ね再現できることが確認 された.既設管水路の実態に即した減衰の 影響を考慮して計算モデルを検討する必要 があると示唆される.

引用文献

- 大久保天,中村和正,今泉祐治,寺田健司,川口清美 (2020):農業用管水路で生じる地震時動水圧,農業農 村工学会論文集,88(1),I 135-I_144.
- 2) 坂本大樹,吉村英人,眞鍋尚,伊藤俊輔,佐藤信光(2018): 地震時における管路内動水圧変化の解析(その1),平

Input acceleration data for the numerical simulation.

Fig. 3 地震時動水圧の実測値と計算値の比較 The result of the numerical simulation.

成 30 年度農業農村工学会大会講演会講演要旨集, 634-635.