# 遮水性機能を伴ったフィルダムの小型振動台模型実験 Small Shaking Table Model Test of Fill Dam with Impervious Function

森 洋 〇高部 侑汰 MORI Hiroshi TAKABE Yuta

#### 1. はじめに

東北地方太平洋沖地震により、岩手、宮城、福島に存在するため池約12,500ヵ所のうち、約1,800ヵ所が被災し縦横断亀裂や斜面部のはらみ等が報告されている¹゚。一般的に堤高15m以上のフィルダムは、均質型、ゾーン型、遮水壁型に分類されており、特にゾーン型のダムでは堤体内で複雑な盛土地盤構成をなしているため、浸透を伴う土構造物の耐震性の解明が急がれている。また、ダム中央部に剛性の高い人工構造物(コンクリート等)を設置した中心遮水壁型のフィルダムもあり、より複雑な震動応答特性を考慮する必要がある。

本研究では、遮水機能等を伴った各種フィルダムの耐震 性評価を小型振動台模型実験装置にて実施し、フィルダム の破壊挙動を検討する。

## 2. 実験方法

Fig.1 は使用した小型振動台模型実験装置でアクリル土槽内に天端幅 5cm、堤高 9cm、奥行き 13.1cm のフィルダム模型を作成することができる。

Fig.2 は、フィルダム模型での実験ケースを示す。Case1 は均質型(豊浦砂)を、Case2 とCase3 は強度の異なるコア材料(豊浦砂+カオリン粘土)を想定した中心遮水ゾーン型と傾斜遮水ゾーン型を、Case4 は 塩化ビニルシートによる表面遮水型を、Case5 はアルミ材による中心遮水壁型を、Case6 は硬質塩化ビニルシートによる補強材盛土を想定して実験を行った。

#### 3. 実験結果

Camera (Top. Front)

Accelerometer (Top. Shaking table)

Vibration direction

Fig.1 Small shaking table apparatus

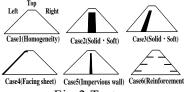



Fig.2 Test case

Shaking table

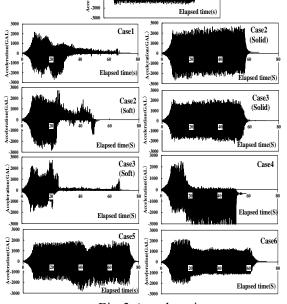



Fig.3 Acceleration

Fig.3 は、振動台での入力加速度例 (4.5Hz・sin 波・最大加速度 1,400Gal) と各ケースでの天端部の応答加速度例を示す。どのケースの天端部でも応答加速度増分が見られるが、Case1、Case2(Soft)、Case3(Soft)、Case4 では、20 秒付近で天端部変状による加速度計のドリフトが確認される。

弘前大学 Hirosaki University

フィルダム、耐震性評価、振動台模型実験

Fig.4 は、各ケースでの天端部の鉛直変位 量挙動を示す。Case1~Case5 は経過時間 10 秒付近から沈下するが、Case6 のみ 25 秒付近 より変状する傾向にある。また、Casel や Case2(Soft)、Case3(Soft)、Case4 は急速に沈下 するが、Case2(Solid)や Case3(Solid)、Case5、 Case6 では沈下が抑制される傾向にある。

Fig.5 は、各ケースでの天端部と左・右斜面 部の残留鉛直変位量を示す。コア部の強度が弱い Case2(Soft)と Case3(Soft)又は Case4 は、Case1 と同等 な天端部での残留沈下量を示している。また、 Case2(Solid)と比べて Case3(Solid)の方が天端部での 沈下が大きく、左・右斜面部での変状も大きいが、 Case3 のコア部が中心から少し左側にズレて設置し ているため、左斜面部の堤体部がコア部に沿って滑 り落ちたためと考えられる。Case5、Case6 は同程度で

の天端部の沈下量を示しているが、左・右斜面 部での変状が一番小さいのは Case6 で、Fig.4 での変状開始時間も遅いことから、Case6 は 耐震性に効果的である可能性がある。

Fig.6 は、各ケースでのせん断帯の発達状況 を示す。Case1~Case5では斜面部分から最初 にせん断帯が入るが、Case6 では天端部で最 初にせん断帯が入る傾向にある。特に、 Case2(Soft)と Case3(Soft)では、後に天端から 入ったせん断帯が進行的にコア部に沿って発 達しており、Case5 でも中心遮水壁に沿った せん断帯が確認できる。また、Case6では天 端部に発生したせん断帯が最上部に敷設され た補強材によって妨げられており、一定程度 の補強効果を発揮していることが伺える。

## 4. まとめ

強度の強いコア部を持つゾーン型や中心遮水壁型、補強 材を敷設したケースは、盛土天端での沈下を抑制できる可 能性を示した。特に、補強材盛土の場合は天端の沈下開始 は他のケースより遅く、天端部に発生したせん断帯の進行 を補強材により妨げているため、一定程度の耐震性効果を 確認することができた。

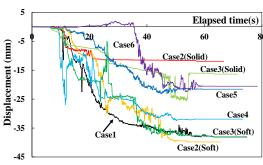



Fig.4 Vertical displacement of top

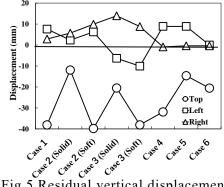



Fig.5 Residual vertical displacement

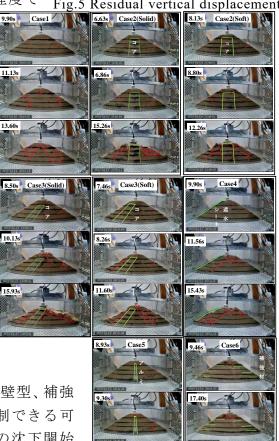



Fig.6 Shear band distribution

〈参考文献〉1) 食料・農業・農村政策審議会 農業農村振興整備部会 平成 24 年度第 2 回 技術小委員会配付資料