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1. Introduction
The coupled analysis of the seepage flow in porous media and regular incompressible flow in the fluid
domain (henceforth, Navier-Stokes flow) is of paramount importance for the risk assessment of the
earthen structures (viz., embankment, levee, canal, etc.) and natural slopes against the erosion, piping,
tidal  waves,  among  others.  The  seepage  flow  and  the  Navier-Stokes  flow  have  different  flow
characteristics;  the  speed  of  fluid  in  porous  media  is  relatively  smaller  than  that  in  fluid  domain.
Furthermore, the seepage flow is mainly governed by the frictional forces, whereas, the Navier-Stokes
flow is governed by the combined action of the inertia force, viscous force and the pressure gradient.
Due to these differences in flow characteristics the simultaneous analysis of coupled flow still remains a
challenging task. Therefore, the aim of this study is to develop a finite element method for simultaneous
computation of numerical solution of the coupled flow in porous domain and fluid domain.
2. Governing equations
Let   and   be  the  non-overlapping  fluid  and
soil  domain,  and  let    be  the
computation  domain.  In  this  study,  the  Darcy-
Brinkman equations  (DBE),  which are  given  by
Eq.  1  and  Eq.  2,  are  employed  to  describe  the
fluid  flow  in  fluid  and  porous  domains  in  a
unified manner. In these equations,   denotes the
density of fluid,  and  denote the velocity and pressure of the fluid,  is the porosity (  in ),  is
the  dynamic viscosity  of  the  fluid,   is  the  permeability  of  the  porosity  ( in ), is  the
acceleration due to gravity, and  is the shear-stress tensor, which is given by .

 (1)  (2)

3. Variational multi-scale space-time formulation
The main challenges in solving the DBE can be attributed to (a) ensuring the compatibility condition
between the pressure and the velocity fields (also known as Ladyzhenskaya-Babuska-Brezzi condition),
(b) suppressing the numerical instability due to the presence of large convective terms, and (c) handling
the deforming spatial domain due to the presence of free-surface and surface erosion of porous media.
Therefore, to overcome these challenges , variational multiscale space-time finite element method
(VMS-ST/FEM) is employed. Let  and  be the space of trial functional space for velocity and 
pressure, and   and  be the space of test functions for  and . Then the weak form of VMS-ST/FEM
is given by:  find , such that  Eq. (3) is true. In Eq. (3),  and  denote 
the fine scale components of velocity and pressure field, respectively, and are given by Eq. (5) and Eq. 
(6), respectively. In these equations,  and  are the stabilization parameters. 
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Figure 1: Finite element model of river-levee system
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   (3)

        (4)       (5)      (6)

      (7)     (8)     (9)

(10)           

    (11)

In Eq. (10),  denotes the characteristic length, in Eq. (11),  denotes the  norm,  and  denote
the number of temporal and spatial nodes in a space-time element, and  denotes the shape function
at th spatial and th temporal node of space-time element.
4. Results and discussions
Figure  1  depicts  the  finite  element  model  of
river-levee  system,  in  which  the  levee  is
equipped  with  a  dual  sheet-pile  system  for  its
strengthening against  the  overtopping  failure.  In
this study, the value of   for soil (both levee and
foundation),  sheet-pile,  and  water  is  0.5,  0.01
and 1.0,  respectively.  The  permeability  of  soil,
sheet-pile  and water  is   m2  ,   m2,  and

 m2,  respectively.  The  viscosity  of  water  is
 Pa.s.  The  initial  profile  of  water,  that  is,

height of segments CI (0.04 m), DJ (0.03  m),  EK (0.1 m), FL (0.13  m) as shown in Figure 1 is
obtained by solving the shallow water equation. The initial condition for   and   corresponds to the
hydrostatic conditions. On the boundary HM,  m/s, whereas on the boundary AH,   is
prescribed. The boundary  IJKLM is a free-surface where  is prescribed as Neumann boundary
condition.  On the outlet boundary CI   is prescribed, and on the boundary BC  is prescribed.
On the boundary AB  is prescribed as the Dirichlet boundary condition. The computation domain
changes due to the movement of free-surface. The present study employs an elasticity based mesh
moving scheme (see, [1] for more details). After achieving the near steady-state, the downstream slope
of levee (segment CDE) is allowed to erode due to the surface flow. The rate of erosion is given by
following equation:
 

where,   m/s,   m/s, and   are erosion parameters, and  is the tangential
velocity near the soil-water interface. The results of deformed configuration (after erosion), pressure
and velocity distribution are shown in Figure 2 which demonstrate that VMS-ST/FEM with moving
mesh technique provides an efficient strategy for simulating the erosion processes in earthen dams.
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Figure  2:  (a)  Piezometric  pressure  field  in  the  river-
levee system, and (b) velocity field in the soil
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