畑場における土壌物理性の測定値の偏差について

下村 和子 美 園 織

1. まえがき

実容積法によって畑場の物理的性質を測定する場合、畑場の場所（試料採取の位置）による偏差がどれくらいのものであるかを知り、将来測定精度をきめた場合（たとえば±1％以内）のような試料採取法を採用しなければならないかを決定するための資料とするためにこの試験をおこなった。

2. 実験の方法

1) 試料の採取法

1959年5月20日、埼玉県上尾農試畑場の火炎土壌と、5月22日、同じく埼玉県玉井試畑場の沖積土壌の二ヶ所で畑場試験をおこなった。

この研究は畑場の場所による土壌物理性の測定値の偏差を知るのが第1の目的となっているので、人による差や、試料採取の時期（時刻）による偏りなどどの測定できるように、あらかじめ設計した。

その概要は次のようなである。

イ）試料採取人員は、3名でこれを、P1、P2、Ps とし、

ロ）試料の採取位置は、つねに作業の片側に定め根際から5〜10cm の位置とした。

ハ）土壌の深さは、5〜10cm、30〜40cmとした。30〜40cmは火炎土壌の場合は黄褐色の下層土となった。これを、D1、D2とした。D1とD2では測定値の水準が異なるので、それぞれ別々にふれを求めることがにした。

ニ）試料採取の順序は、2点ずつ比較的短時間の対をとり、3対とした。（T1、T2）、（T3、T4）、（T5、T6）とした。

D1にて、3人同時に（T1）採土を開始し、全員の終了をまて、さらに同時に（T2）つづきの採土をはじめめる。T1とT2との間隔はできるだけ小さくした。

D2につき、D1と同様な採土をおこなった。ただしこの場合は、シャベルで30cmほどの土を割りとったので、T1とT2との間隔は、D1のときよりも大きくなっている。

（T1、T2）の対と（T3、T4）の対との間隔は1時間になるようにした。ただしT1、T2の間隔とT3、T4の間隔はできるだけ等しくなるようにした。

さらに（T5、T6）の対と（T7、T8）の対との間隔を約3時間として、前と同様の方法でT5、T6を採取した。

試料採取は、午前10時に始まり午後2時30分に終了した。それぞれの採取時間はTable1 に示されている。

Table1 採取時間

<table>
<thead>
<tr>
<th>計測値</th>
<th>上尾</th>
<th>1959年5月20日</th>
<th>玉井</th>
<th>1959年5月22日</th>
</tr>
</thead>
<tbody>
<tr>
<td>5〜10cm</td>
<td>T1</td>
<td>A.M. 10時7分</td>
<td>T2</td>
<td>A.M. 10時6分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10時13分</td>
<td></td>
<td>10時15分</td>
</tr>
<tr>
<td>30〜40cm</td>
<td>T1</td>
<td>10時26分</td>
<td>T2</td>
<td>10時23分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10時34分</td>
<td></td>
<td>10時34分</td>
</tr>
<tr>
<td>5〜10cm</td>
<td>T3</td>
<td>11時8分</td>
<td>T4</td>
<td>11時8分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11時22分</td>
<td></td>
<td>11時22分</td>
</tr>
<tr>
<td>30〜40cm</td>
<td>T5</td>
<td>11時31分</td>
<td>T6</td>
<td>11時20分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11時4分</td>
<td></td>
<td>11時4分</td>
</tr>
<tr>
<td>5〜10cm</td>
<td>T7</td>
<td>P.M. 1時56分</td>
<td>T8</td>
<td>P.M. 2時3分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2時3分</td>
<td></td>
<td>2時3分</td>
</tr>
<tr>
<td>30〜40cm</td>
<td>T9</td>
<td>2時10分</td>
<td>T10</td>
<td>2時19分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2時22分</td>
<td></td>
<td>2時22分</td>
</tr>
<tr>
<td>終了</td>
<td></td>
<td>2時35分</td>
<td></td>
<td>2時46分</td>
</tr>
</tbody>
</table>

3. 試験畑場

上尾・玉井両試の両畑場とも、当時大麦の栽培で、すでに熟期に入りはじめ、（玉井の畑場はほとんど熟期に進んでいた）作物の吸水、蒸散作用は、それほど大きくなりないことが推察された。作物の生育状況は、両畑場と
も比較的良好で、試験圃場内ではほぼ均一とみなされる。

イ）上尾圃場タテ9m、ヨコ30cm（但しウネ間に60cm）の圃場を、タテ方向1m毎に区切り、ヨコ方向1ウネとの交点270点の（9x30）中から18点を、アトラランダムに選定した。そのときの圃場の状態（3相）を、Fig. 1に示す。ただし圃場内の1地点についてのものである。

ロ）玉井圃場タテ30m、ヨコ9cm（ウネの間を、上尾の場合と同じように1m毎に区切り1ウネ毎との交点270の中からアトラランダムに選定した。そのときの圃場状態（3相）を、Fig. 2に示す。ただしこの場合も圃場内の1地点についてのものである。

3）測 定 法

採土した試料は、試料円筒と蓋との組合せ部分をセロテープで包んで、実験室に持ち帰り、翌日測定した。測定者は1人とし、重量（W）→実容積（V）の順におこないが、測定を始めてから終了まで、1か所につき約3時間要した。測定順序は、乱数表を用いた。

測定結果に統計処理を加え、検討をおこなった。

Fig. 3 W、V相関図（上尾火山灰土類）

Table 2 測定値（上尾火山灰土類）

<table>
<thead>
<tr>
<th>W</th>
<th>5-10cm</th>
<th>V</th>
<th>5-10cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>99.2</td>
<td>103.2</td>
<td>91.5</td>
</tr>
<tr>
<td>T2</td>
<td>101.7</td>
<td>103.7</td>
<td>111.7</td>
</tr>
<tr>
<td>T3</td>
<td>109.1</td>
<td>109.3</td>
<td>111.7</td>
</tr>
<tr>
<td>T4</td>
<td>21.6</td>
<td>110.3</td>
<td>98.0</td>
</tr>
<tr>
<td>T5</td>
<td>114.9</td>
<td>110.6</td>
<td>110.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>61.1</td>
<td>63.1</td>
</tr>
<tr>
<td>T2</td>
<td>65.8</td>
<td>68.9</td>
</tr>
<tr>
<td>T3</td>
<td>62.0</td>
<td>69.0</td>
</tr>
<tr>
<td>T4</td>
<td>75.0</td>
<td>67.2</td>
</tr>
<tr>
<td>T5</td>
<td>76.5</td>
<td>66.0</td>
</tr>
<tr>
<td>T6</td>
<td>70.3</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Table 3 測定値（玉井火山灰土類）

<table>
<thead>
<tr>
<th>W</th>
<th>30-40cm</th>
<th>V</th>
<th>30-40cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>100.4</td>
<td>104.5</td>
<td>99.8</td>
</tr>
<tr>
<td>T2</td>
<td>104.5</td>
<td>113.1</td>
<td>105.9</td>
</tr>
<tr>
<td>T3</td>
<td>101.8</td>
<td>108.0</td>
<td>102.0</td>
</tr>
<tr>
<td>T4</td>
<td>102.5</td>
<td>106.5</td>
<td>109.1</td>
</tr>
<tr>
<td>T5</td>
<td>98.6</td>
<td>112.2</td>
<td>102.7</td>
</tr>
<tr>
<td>T6</td>
<td>110.2</td>
<td>111.0</td>
<td>108.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>71.3</td>
<td>73.0</td>
</tr>
<tr>
<td>T2</td>
<td>73.5</td>
<td>79.7</td>
</tr>
<tr>
<td>T3</td>
<td>68.8</td>
<td>76.2</td>
</tr>
<tr>
<td>T4</td>
<td>73.0</td>
<td>71.1</td>
</tr>
<tr>
<td>T5</td>
<td>69.4</td>
<td>77.7</td>
</tr>
<tr>
<td>T6</td>
<td>75.8</td>
<td>75.8</td>
</tr>
</tbody>
</table>

3. 測定結果

1） 上尾火山灰土類

イ） 測定値

測定結果を Table 3に示す。Fig. 3は全重量と実容積の相関図である。表面土と下層土は明らかに区別できる。

ロ） 分散分析

分散分析の結果を Table 4にまとめた。

分散比に F-検定をおこなうと、いずれも有意性はみられず、この試験では、全重量、実容積とも表面層および下層土のいずれの差も、これらの個々の間に、時刻の間にも有意な差はみとめられない。すなわちこの試
Table 3 分散分析表（上尾火山灰土壌）

<table>
<thead>
<tr>
<th>変数因</th>
<th>自由度</th>
<th>平方和</th>
<th>分数</th>
<th>分数率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W 5～10 cm</td>
<td>V 5～10 cm</td>
<td>W 10～30 cm</td>
</tr>
<tr>
<td>全体</td>
<td>17</td>
<td>872.19</td>
<td>346.26</td>
<td>526.18</td>
</tr>
<tr>
<td>人</td>
<td>2</td>
<td>186.67</td>
<td>86.22</td>
<td>121.21</td>
</tr>
<tr>
<td>時刻</td>
<td>5</td>
<td>314.56</td>
<td>113.90</td>
<td>173.19</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>146.09</td>
<td>50.47</td>
<td>22.43</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td>168.47</td>
<td>56.79</td>
<td>110.76</td>
</tr>
<tr>
<td>P X S</td>
<td>4</td>
<td>56.92</td>
<td>17.40</td>
<td>12.33</td>
</tr>
<tr>
<td>誤差</td>
<td>6</td>
<td>314.42</td>
<td>128.74</td>
<td>259.43</td>
</tr>
</tbody>
</table>

表の結果では、どの人が1日中のうちどの時刻に探土を
おこなっても、試料の全重量についても、容積量についても
dらべる同じ値を示し、差があるようにみえても、同一
図場内の流れのそれらの個人のバラツキと同程度の
かぎりでしかないと考えられる。

ハ）標準偏差、変動係数

全重量Wと容積容積Vについては、表層土、下層土と
もに、人による差、時刻による差はみとめられないので、
人や時間にとらわれず、全体の標準偏差および変動係数
を求めてみた。その結果を Table 4 にまとめた。

ニ）表層土と下層土との差

全重量については、表層土と下層土との差はみとめら
れないが、容積陣Vについては明らかに有意な差がみと
められた（t検定による）これは火山灰土壌の土壌水分
系の特徴。即ち下層土は膨潤水含量がきわめ大さいと

Fig. 4 測定値のバラツキ（個人による）上尾火山灰土壌

Table 4 標準偏差、変動係数

<table>
<thead>
<tr>
<th>上尾</th>
<th>W 5～10cm</th>
<th>V 5～10cm</th>
<th>W 30～40cm</th>
<th>V 30～40cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準偏差</td>
<td>7.16</td>
<td>4.65</td>
<td>5.57</td>
<td>3.45</td>
</tr>
<tr>
<td>変動係数</td>
<td>6.76</td>
<td>7.11</td>
<td>5.26</td>
<td>4.74</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th></th>
<th>W 5～10cm</th>
<th>V 5～10cm</th>
<th>W 30～40cm</th>
<th>V 30～40cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>個人</td>
<td>6.17</td>
<td>3.89</td>
<td>4.79</td>
<td>2.97</td>
</tr>
<tr>
<td>時間</td>
<td>9.43</td>
<td>5.51</td>
<td>6.56</td>
<td>4.30</td>
</tr>
</tbody>
</table>

Fig. 3 のW－V相関図では、W－Vの曲線が表層土と下層土
でV軸の方向に明らかな分離を

#) Table, 5 はそれぞれの平
均値に対して、その真の平均のあ
る範囲の巾をしめす。

個人による差、時間による偏
りが表層土下層土をとわす、い
づれも有意であったから測定
值のバラツキはすべて一様に誤
差（図場内の地点の間の変動な
ど）によるとみてこの計算をお
こなった。その結果を Fig.4～
Fig. 5 推定値の信頼度（時間による）上塚火山灰土層

![Graph](image)

Table 6 測定値（玉井沖積土層）

<table>
<thead>
<tr>
<th>W 5〜10cm</th>
<th>V 5〜10cm</th>
<th>W 30〜40cm</th>
<th>V 30〜40 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td>P₁</td>
</tr>
<tr>
<td>T₁</td>
<td>130.1</td>
<td>170.0</td>
<td>143.4</td>
</tr>
<tr>
<td>T₂</td>
<td>135.5</td>
<td>160.7</td>
<td>143.5</td>
</tr>
<tr>
<td>T₃</td>
<td>148.7</td>
<td>159.0</td>
<td>131.8</td>
</tr>
<tr>
<td>T₄</td>
<td>152.6</td>
<td>155.5</td>
<td>144.7</td>
</tr>
<tr>
<td>T₅</td>
<td>152.1</td>
<td>156.7</td>
<td>152.5</td>
</tr>
<tr>
<td>T₆</td>
<td>150.3</td>
<td>164.2</td>
<td>155.1</td>
</tr>
</tbody>
</table>

Table 7 分散分析表（玉井沖積水域）

<table>
<thead>
<tr>
<th>変動因</th>
<th>自由度</th>
<th>平方和</th>
<th>分 数</th>
<th>分 数 率</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5〜10cm</td>
<td>V</td>
<td>5〜10cm</td>
<td>V</td>
</tr>
<tr>
<td>全 体</td>
<td>17</td>
<td>196.61</td>
<td>501.55</td>
<td>474.80</td>
<td>319.40</td>
</tr>
<tr>
<td>個 人</td>
<td>2</td>
<td>1203.12</td>
<td>3485.91</td>
<td>149.56</td>
<td>36.32</td>
</tr>
<tr>
<td>時 刻</td>
<td>5</td>
<td>257.16</td>
<td>62.19</td>
<td>63.44</td>
<td>20.36</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>213.79</td>
<td>52.78</td>
<td>48.16</td>
<td>10.06</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
<td>43.37</td>
<td>9.41</td>
<td>15.28</td>
<td>10.30</td>
</tr>
<tr>
<td>P×S</td>
<td>4</td>
<td>541.75</td>
<td>149.37</td>
<td>186.38</td>
<td>57.16</td>
</tr>
<tr>
<td>誤 差</td>
<td>6</td>
<td>144.52</td>
<td>41.40</td>
<td>76.42</td>
<td>25.65</td>
</tr>
</tbody>
</table>

Fig. 6 W, V の相関図（玉井沖積水域）

Table 8 標準偏差、変動係数

<table>
<thead>
<tr>
<th>玉 井</th>
<th>W</th>
<th>5〜10cm</th>
<th>V</th>
<th>5〜10cm</th>
<th>W</th>
<th>30〜40cm</th>
<th>V</th>
<th>30〜40cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準偏差</td>
<td>4.57</td>
<td>2.37</td>
<td>3.19</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>変動係数</td>
<td>3.00</td>
<td>3.24</td>
<td>1.88</td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>真の平均</td>
<td>150.36 ±2.25</td>
<td>73.08 ±1.20</td>
<td>169.49 ±1.58</td>
<td>82.94 ±0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9 個 人

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>5〜10cm</th>
<th>V</th>
<th>5〜10cm</th>
<th>W</th>
<th>30〜40cm</th>
<th>V</th>
<th>30〜40cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>個 人</td>
<td>5.35</td>
<td>2.72</td>
<td>3.64</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>時 間</td>
<td>7.56</td>
<td>3.86</td>
<td>5.15</td>
<td>3.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

と、全重量、実容積のいずれについても明らかに遠かで手がめられる。これは沖積水域の特徴であると考えられる。

*） Table 9 はそれぞれの平均に対して、その変動のある範囲の帯をしめす。

この場合も標準偏差を求めたと同じように、（個人の

とみとめられたので）小さな時間差（R）と誤差との平方和をついて計算をおこなった。これらの結果を Fig 7〜8にしめした。

*） Fig 9は個人についての時間によるちがいをしめす。
4. 結果の検討

1）表層の堆積は、人による差、時刻による差はみとめられない。

堆積面での場所（位置）の間のバラツキのみとなる。玉井堆積の場合は、人による差（P）、時刻による差の時刻による方が低い方（P < S）が、それぞれ、1％および5％水準で有意差がみとめられた。

そこで、これらの測定値の水準およびバラツキを各人について検討してみた結果、P のみにとくに大きな偏りがあることがわかった（Fig. 7）。そこで、P を除いて分散分析した結果、時刻による差が有意に出た。そこで、P の時々個人について（P1）についてはつなに偏りをもっているが時刻Sに対する変化のしかたの目注目して考
と考えると、P₂個人の採土のくせ、あるいはその位置の園場全体による影響を考えられるけれども、個人の採土のくせとみるには、P₁のS₁のみに限られているし、また、その試料の重量および容積の相関をついてみると、他の試料と同様の傾向を示している（図6）。したがって、P₂個人個別のくせとは考えられない。また試料の採取位置が特別な条件になっていたとも考えられない。すなわち、図のような特殊な要因にとつづくものとしか考えられない。そこで採取者個人P₂に当時の記録をのぞいてもらったところ、採土器の押え金具がずれていたことが明らかになった。おそらくこのような特殊な条件のもとでもあるであろう。そこで於て、玉井園場の場合においても同様である。試料の重量についても容積についても殆ど同じ値を示し、凝があったようにみてても、同じ園場内でのそれらの値、パラッキと同様度のものではないことがわかった。しかし前にも述べたように、園場ともにすでに蒸発入りはせず、作物の吸水、蒸散作用もそれほど大きくないことが推察されたので、気象条件や、作物の生育の時期の違いによっては、時刻による差がみとめられることも考えられる。

2) 重量と容積の相関関係は、同一園場の場合、ほぼ直線になることが明らかにされた。 （上尾火山灰土）

園の下層土の場合のみは測定値のバラツキが大きいけれども近似的には直線とみなし得る。このことは全重量と実容積には、園場の位置による差がかなりの大きさをもっている。土層の真比重が一定の限界（同一土層についてはこれは妥当であるが）田相率の偏差は小さいものとなることを予想させる。いずれのは田相容積あるいは真比重は、

\[V_s = \frac{W - V}{d - 1} \]

からわかるように、真比重が一定であれば、WとVの差に比例するかであろう。

3) この性質を測定結果の検討に利用することができる。いま、IとJは同一園場に位置する異なる試料であるとすると、その重量と容積の間に

\[W_i > W_j \text{ なら } V_i > V_j \]

\[\Delta W_j \leq \Delta V_j \]

の関係が一般的に成立する。もちろん例外はありうる。けれども、このことは、土壌水分の密度1 g/cc, 土層の真比重は通常2.3〜3.0であるという一般的な事実にもとづいている。

4) 標準偏差および変動係数については、上尾火山灰土と玉井沖積土層の共通点として、土層別にみれば、両園場とも全重量および容積値においても、表層土は下層土よりもかなり大きいか。これらは耕作の影響であろう。また実験点としては、上尾火山灰土層、玉井沖積土層よりも、全重量、容積いずれも大きい。これらは土層の性質によるものであろう。

まとめ
この試験を行うにあたって、埼玉県農試化学部佐藤木坂技、玉井支局長小松崎技師、多田技師、および農試試験設計研究室奥野技官、奥野専技手技官、土壌物理研究室、寺沢技官、岩田技官、松口技官、川尻技官の御協力を得ました。ここに厚く感謝の意を表します。

参考文献
1) 美国：土壌誌 29.3 (1958)
2) 農試試験法：農林省農政改良局技術研究部(1949)
3) 美国，寺沢，木下，須藤，農試技報18 (1953)