法が要求される。
先づ風護に関係する条件として加えるものは地表面の
稜さ（roughness）と作物残骸物（crop residue）であ
る。これらは風速又は堆積することが出来る。又勿論
他の要因例えば地形、家屋その他の遮蔽物などがある
が、それらは遮蔽に測定する方法はない。

5. あとがき

風護の問題は現象としては物理的問題であるが、その
原因及び防止対策について追求して行くには物理的及び
化学的両面あるいはその接触点をなすべき相互関係に
ついて取扱う必要がある。當然農芸学の応用も必要で
なければならない。

したがってその関係の分野も広く、多角的に研究が
進められてはじめて成果を得ることが出来るのはなか
ろうか。

又完備の目的は農業である限り生産力の増大にある。す
みや耐舎性を増大する土壤改良の方向が生産力の增
強と一致する必要がある。その点質素の質的逆換の方
向が定量化土壤より酸素質という点で一覧点が見出され
ている。

文献
1) CHEPIL, W. S. : Soil Sci., 75, 473~483 (1953)
2) 長谷川・森田・中川：関東地方農試研究報告 8 号,
 92~103 (1955)
3) 前田：土壤被害に関する研究集録 II, 168~175
 (1953)

資料

水田土壌の透水性について

松尾 英俊* • 佐藤 剛夫**

水田土壌の透水性に関して、現在までにまとめてい
る成績の要約を述べることにする。

1. 測定方法とその検討

1）透水係数の測定方法

現地土壌の構造を破壊しないように試料を採取するた
めに、採取器ならびに採取円筒を製作した。円筒の大き
さは直径 7.5cm、高さ 7.5cm である。

透水係数は第 1 図に示すような装置で、定水位法によ

* 九州農業試験場 昭和35年7月4日受理

4) CHEPIL, W. S. : Soil Sci., 55, 275~287 (1943),
 76, 387~399 (1953), Soil Sci. Soc. Amer. Proc.,
 18, 13~16 (1954)
6) 国分・板川：土壌調査要集，3 集 (1957)
7) CHEPIL, W. S. : Soil Sci., 80, 413~421 (1955)
8) RUSSELL, E. J. : Soil Conditions and Plant
 Growth, 8 th. Ed. 568~570 (1950)
9) 国分・板川・根本：関東東北農試研究報告 10 号,
 107~113 (1957)
10) DANIEL, H. A. and LANGHAM, W. H. :
 J. Am. Soc. Agron., 28, 587~596 (1938)
11) DANIEL, H. A. : ibid., 28, 570~580 (1938)
12) CHEPIL, W. S. and ENGLEHORN, C. L. :
 Report on causes and effects of wind erosion
 in east-central Kansas in march (1950)
13) CHEPIL, W. S. and WOODRAFF, N. P. :
 How to reduce dust storms (1955)
14) 小林・品川：土壌調査要集，4 集，46 (1958)
15) 国分・板川・根本：土壌調査要集，6 集，78 (1960)
16) CHEPIL, W. S. : Soil Sci., 72, 387~401 (1951)
17) 国分・板川・根本：土壌誌，30，401~404 (1959)
18) CHEPIL, W. S. and WOODRAFF, N. P. :
 J. Soil and Water Conservation, 9, No6 (1954)
分からう土壌の物理性 第3号 (1960)

第1図 透水係数測定装置

を通過してロートの下端から滴下が始まり、この滝下流速が一定に達した後、今からに導入した水を求めて、その時より時間と水量の計測を行う。この無水温を同時に記録しておく。このようにして得られた計測値より次の式

\[P = \frac{QL}{\eta r} \]

ここでP: 透水係数 (cm/day), Q: 淹透水量 (cm³), L: 土壌柱の長さ (cm), A: 土壌柱の横断面積 (cm²)

T: 淹透水量がQに達するまでの要した時間 (day), H: 水面から土壌下端までの水頭差 (cm), W: 測定時の水温 \(^\circ C \)における水の粘性係数 (dyne·sec/cm²), \(\eta r \): 20°C における水の粘性係数 (dyne·sec/cm²) である。透水係数の単位は水田土壌に対する実用的見地から cm/day 又は mm/day が便利なので両者のいずれかを用いることとした。

2) 湯水期間と落水期間の透水性の比較

畑田以外の水田土壌は一般に湯水と落水（乾燥）が毎年交互にくり返されている。湯水と落水の交代は土壌の物理性に大きな影響を与えるので、水田土壌の透水性も湯水期間と落水期間では、かなりの変化があることが予想される。両期間における透水性の変異の度合を知り透水係数測定の時期を決定するために、乾燥地帯の水田から湯水期間（3月）と落水期間（9月）に同一水田、同一層位の試料を採取して透水係数の測定を行い、これを第1表に示した。採取した層位はいずれも探底以下の層であったが、落水期間の値は湯水期間の値の数倍から100倍以上となっている。この差異の大きさの程度は粘土含量の多い乾燥収縮の大きな土壌種大きい傾向にあり、湯水期間中に測定された値の大きい順位と、落水期間中に測定された値の順位の間には相関がないようであった。両作土層の土壌は、湯水、落水による物理的性状の変化が最大のものと考えられ、この層位の透水性の変異を岩層補助表すべきであったが、落水期間中は土層に大きな割合が多数形成されており、供試土はこの割合を通じて急激な速さで流下し一定値を示すに至らないので透水係数を測定することが困難であった。従って作土層の透水係数の数値を示すことを見合せたが、実際には下層土以上に顕著な差異を示すものとして差支えない。

以上のことがから水田土壌の透水性の測定はすべて湯水期間中の試料について行うことに定めた。

3) 透水係数と日滲透過量の比較

上記の方法で得られる透水係数の値が、現地水田の日滲透過量と比較する場合にどのような意義をもつかについて検討を行った。九州農試内田園を供試し、透水係数の

第1表 同一土壌における湯水期と落水期の透水係数

<table>
<thead>
<tr>
<th>土壌名</th>
<th>湯水期</th>
<th>乾田期</th>
</tr>
</thead>
<tbody>
<tr>
<td>長 田</td>
<td>97</td>
<td>609</td>
</tr>
<tr>
<td>矢 部</td>
<td>97</td>
<td>844</td>
</tr>
<tr>
<td>萩 ロ S L</td>
<td>58</td>
<td>882</td>
</tr>
<tr>
<td>八 女</td>
<td>17</td>
<td>1499</td>
</tr>
<tr>
<td>羽 夫 坪 C L</td>
<td>317</td>
<td>_*</td>
</tr>
</tbody>
</table>

* 流速が遅過ぎて測定不能

第2表 同一土壌の日滲透過量と透水係数

<table>
<thead>
<tr>
<th>日 滲 透 量</th>
<th>透 水 係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>滲透期間</td>
<td>mm/day</td>
</tr>
<tr>
<td>7月中旬</td>
<td>4.8</td>
</tr>
<tr>
<td>7月下旬</td>
<td>7.0</td>
</tr>
<tr>
<td>8月上旬</td>
<td>6.2</td>
</tr>
</tbody>
</table>
測定を行うと共に、同試験区内に無底槽および有底槽を設置し、この中に水銀を供給して温度、傾斜の目盛つきガラス管を用いて、1日毎の浸透量を読み取りことによって浸透深および浸透水深発見を観測し、両者の差から土壌中の浸透量を算出した。透水係数の測定は、この水田の各層位の中で最も透水不良な土壌層から数点ずつ採取した試料について行つてこれを平均し、日浸透量は7月中旬から1ヶ月にわたつて毎日計測して10日間毎の平均値を第2面にかかげた。同この水田の地下水位はその当時15cm程度土壌表面より下で、浸潤水深の水位の変化により多少上下したようであった。又同様な実験を八代砂土についても行つたが、この場合は地域内の透水係数の平均は191.6mm/dayであったのに対して、日浸透量は-0.5mm/dayであり、測定が浸透量を上限の結果となつた。同この水田の地下水位は地表よりやや上であった。

以上のように透水係数と日浸透量の関係は地下水位が極端に高い場合には不明瞭であるが、地下水位の影響が浸透量に強く反映しない範囲の場合には、透水係数の値と日浸透量の値がかなりよく一致することを認めた。

2. 現地土壌の透水性

現地水田の透水性の実態を把握するために、1956年の浸水期間中（9日）に数多くの水田の現地調査を行い、層位別ならびに土壌性別に検討を加えた。又同一水田土壌について透水性の時期別変化についても調査した。

1）採取した土壌の層位とその意義

水田土壌の物理的性質は層位によって土壌の構造、組織その他のが同一でない場合が多い。このような諸性質の違いは透水性的面にも影響していることが予想され、又各層位の中で最も低い透水性をもつ層位がその水田の透水性を支配し代表するものと考えられる。このような層位は、水田土壌では経験的に農地内に存在していると理解されているので、本調査においては農地を中心とした3つの層位を第2面に分けて3種の試料を取り出したことにした。これから3種の試料の透水係数を相互に比較することによって、各層位の透水係数の近似値を推定することができる。たとえば第3面の長田LFSの場合、試料Apg-A12gの方が試料A12g-Bgにくらべて透水係数が低くなっているが、この事実は試料Apg-A12gの作土層に示す透水性によってこの試料全体の透水性が支配されていると考えることが可能であり、この試料が表層透水係数は作土層のそれに近い値であるとみなすことができる。同様に試料A12g-Bgの透水係数の値が試料Bgのそれより低い時には、この値は農地層の透水係数に近い値とみなすことが出来る。

2）透水係数の層位別変化について

透水係数の値が各水田について層位毎に比較してみると、大部分の水田が層位の変化によって非常に違いが見られた事を示している。採集した3層位の中で最も透水不良な層

<table>
<thead>
<tr>
<th>土壌名</th>
<th>層位</th>
<th>透水係数 mm/day</th>
<th>透水率 %</th>
<th>相同層位 比</th>
</tr>
</thead>
<tbody>
<tr>
<td>長田LFS</td>
<td>Apg-A12g</td>
<td>27.5</td>
<td>53.4</td>
<td>Apg 14.6</td>
</tr>
<tr>
<td>A12g-Bg</td>
<td>27.5</td>
<td>53.4</td>
<td>Apg 14.6</td>
<td></td>
</tr>
<tr>
<td>矢部FSL</td>
<td>Apg-A12g</td>
<td>11.3</td>
<td>56.8</td>
<td>A12g 11.8</td>
</tr>
<tr>
<td>A12g-Bg</td>
<td>11.3</td>
<td>56.8</td>
<td>A12g 11.8</td>
<td></td>
</tr>
<tr>
<td>清流SL</td>
<td>Apg-A12g</td>
<td>5.6</td>
<td>52.9</td>
<td>A12g 20.1</td>
</tr>
<tr>
<td>A12g-Bg</td>
<td>5.6</td>
<td>52.9</td>
<td>A12g 20.1</td>
<td></td>
</tr>
<tr>
<td>八女L</td>
<td>Apg-A12g</td>
<td>10.2</td>
<td>54.8</td>
<td>A12g 22.7</td>
</tr>
<tr>
<td>A12g-Bg</td>
<td>10.2</td>
<td>54.8</td>
<td>A12g 22.7</td>
<td></td>
</tr>
<tr>
<td>羽木野CL</td>
<td>Apg-A12g</td>
<td>2.2</td>
<td>51.3</td>
<td>A12g 26.3</td>
</tr>
<tr>
<td>A12g-Bg</td>
<td>2.2</td>
<td>51.3</td>
<td>A12g 26.3</td>
<td></td>
</tr>
<tr>
<td>同生CL</td>
<td>Apg-A12g</td>
<td>1.3</td>
<td>58.8</td>
<td>A12g 31.8</td>
</tr>
<tr>
<td>A12g-Bg</td>
<td>1.3</td>
<td>58.8</td>
<td>A12g 31.8</td>
<td></td>
</tr>
<tr>
<td>木堂SI</td>
<td>Apg-A12g</td>
<td>0.3</td>
<td>80.7</td>
<td>A12g 39.4</td>
</tr>
<tr>
<td>A12g-Bm</td>
<td>0.3</td>
<td>80.7</td>
<td>A12g 39.4</td>
<td></td>
</tr>
<tr>
<td>三瀬SI</td>
<td>Apg-Dg</td>
<td>0.1</td>
<td>63.1</td>
<td>Apg 42.3</td>
</tr>
<tr>
<td>Dg</td>
<td>0.1</td>
<td>63.1</td>
<td>Apg 42.3</td>
<td></td>
</tr>
</tbody>
</table>
位のあり方、各地方の土壌条件によって一様でなかっ
た。
第3表は乾田土壌の水田の透水係数が示されている
が、乾田地帯の水田においては、作土層が下層土よりも
透水不良となっている。乾田地帯は透水期間中に土壌が
良く乾燥して相当な深さまで亀裂が入るが、これとゆっくり
新しい水分の浸透を形成する。この事実は近盛の透水期間
と浸水期間の透水性の比較によって明らかである。しか
し作土層は田植前終期における土壌の乾燥度が低かった
ため、その作業によって、浸水期間中に生成した亀裂や大孔隙を除
端に有機物に近い状態となり、この層位の透
水性は著しく減退すると考えられる。
第4表 現地土壌の透水係数、孔隙率、粘土含量

<table>
<thead>
<tr>
<th>土壌名</th>
<th>層位</th>
<th>透水係数mm/day</th>
<th>孔隙率%</th>
<th>粘土層%</th>
</tr>
</thead>
<tbody>
<tr>
<td>八代S</td>
<td>Apg-A1G</td>
<td>159.3</td>
<td>46.6</td>
<td>Apg-A1G</td>
</tr>
<tr>
<td></td>
<td>A1G-GG</td>
<td>522.0</td>
<td>43.1</td>
<td>A1G-GG</td>
</tr>
<tr>
<td>昭和S</td>
<td>Apg-A1G</td>
<td>19.6</td>
<td>55.3</td>
<td>A1G-GG</td>
</tr>
<tr>
<td></td>
<td>A1G-GG</td>
<td>2.9</td>
<td>45.9</td>
<td>A1G-GG</td>
</tr>
<tr>
<td>文政S</td>
<td>Apg-A1G</td>
<td>3.4</td>
<td>52.8</td>
<td>A1G-GG</td>
</tr>
<tr>
<td></td>
<td>A1G-GG</td>
<td>0.9</td>
<td>43.3</td>
<td>A1G-GG</td>
</tr>
<tr>
<td>千丁C</td>
<td>Apg-A1g</td>
<td>0.7</td>
<td>56.1</td>
<td>A1g-Bg</td>
</tr>
<tr>
<td></td>
<td>A1g-Bg</td>
<td>102.7</td>
<td>43.9</td>
<td>A1g-Bg</td>
</tr>
<tr>
<td>木佐未</td>
<td>Apg-A1g</td>
<td>2.9</td>
<td>62.8</td>
<td>A1g-Bm</td>
</tr>
<tr>
<td></td>
<td>A1g-Bm</td>
<td>0.8</td>
<td>55.7</td>
<td>A1g-Bm</td>
</tr>
</tbody>
</table>

第4表は湿田および溝田類似の水田の透水係数と孔隙
率を示している。このうち千丁Cと木佐未 Siclは乾
田地帯に属するが、冬期間も浸出をして“い草”を栽培
している水田であって、冬の浸水における乾燥が進行しな
い点で、湿田と類似しているので特に区別して第4表に
示した。湿田の土壌の透水性に関する層位別変化は、
干田土壌と比較すると非常に大きな差違が認められる。八
代Sを除く他の4水田では透水性低圧の層位が、作土層
より下層の層に存在する。このうち昭和、文政、千丁の
3土壌は、飽和度の透水係数を示したこれら3土壌
の飽和度は組織が特に深く孔隙率も高く、透水性が高
いことを示すものであった。木佐未 Siclは前記3土壌と違
つて、孔
隙率は高いが有機物が粘土含量高く亀裂が大孔隙に乏
しいことが透水不良の原因をなすものと思われる。八代
Sでは下層土の方が作土層より高い透水係数を示して
いるが、下層土の透水良好な土壌は第3表の乾田土壌の場
合とは質的な差違があるようである。八代Sの下層土
には乾田の場合のような構造の発達は認められず、この
場合には機械的構造の差によるものであって、下層土は粘
土などの微細粒子に欠乏していた。
3) 機械的構造との関係
透水性と機械的構造（粘土含量以外は省略）の間の関
係は、従来常識的に考えられているような単純なもので
はなく、機械的構造がほぼ同一でも構造病状を見る傾
向の差を示している。この事は前項で述べた透水性の
層位別変化でも理解されることであり、同一水田の3層
位の機械的構造がほぼ類似している場合でも、各層位の
構造は組織の差があれば透水係数の値は著しく異ったも
のとなってくる。
成立の条件がほぼ同様であると考えられる作土層の透
水性は数値分布と密接な関係がある。粘土含量に富む土
壌層の透水係数の値が低くなる。換言すれば、水田作土
層のように代々その他の水中作業によって構造が著しく破
壊され同構造に近い土壌の場合には、粘土含量の高い土
壌層が透水不良であると推定することが出来る。
しかしながら、調査した土壌の中には粘土が極めて低
い砂質土壌でありながら、透水性が極めて低かい土壌も存
在していた。昭和S L、文政S LのA1g-G層の層位がこ
れであるが、同様共構造の発達が微弱で亀裂の生成も
なく組織も密であった。このように砂質土壌で透水不
良になる機構については後述する。
4) 同一水田の層位別、時期別変化について
羽鳥塚L C Lについて1956年の水田栽培期間中、生育各
期にわたって層位毎に区分して土壌試料を採集し、その
透水係数を測定し、その結果を第5表に示した。
透水係数の値を層位別に比較すると、各期作土層を
含んだApg および Apg-A1g の透水係数の値を示し
し、8月22日（中干期）を除けば個体間の差異が顕著
でないことが示された。A1g-Bg の透水係数は透水性的の
層位が低い値を示すものから非常に高い値を示すものまでは、
個体間の差異も著しい。Bg 層の試料はいずれも高い値で個体間の差異も大
きかったが、この水田の鍾水以下は直徑1 cm 内に小石
の土壌の地の深さまで浸水しており、作土層構造の発達が著
しく亀裂が多い。これらの事が下層土の透水係数を高か
り層位であると共に、採取位置による変動を大きくした
理由である。
透水係数の時期的変化は、作土層についてはかなり明
確であったが下層土では判然としなかった。作土層部分を
含む Apg に透水係数は、浸出水を2
週間後から中干期までは大きな変化を示さず、中干期後
に著しく高い値となり、その後は次第に低い値となり著
水壩には最も低い値となった。中干によって透水係数が高くなるのは、乾燥によって土壌が収縮して亀裂が生成し、水の通過が新しく出来たためである。流失以下の下層土では試料の採取位置による透水係数の変異が著しいために、透水係数の値を時期的に比較することは困難であった。3層位の中で作土層が最低の透水性を示すことから、この水壩各層を通じての時期別変化は、作土層の透水性の時期別変化によって支配されることになる。

3. 砂質土壌における透水性の検討

現地調査によって砂質土壌の中にも極めて透水不良な土壌があることを知ったため、人工的に砂質土壌を合成して、砂質土壌における透水性の変化について検討した。

1) 実験方法

粒径の異なる砂土あるいは壊質砂土を海岸や川下から10種類採取し、これらの材料を適宜組合わせて粒度分布の状態を異にする砂質土壌を多数合成した。合成する際留意した点は粘土含量を一定にして、粒度分布曲線のピークの位置およびその位置における粒子の質量を規則的に変化させたことである。

合成土壌に水を加え、30℃で3日間放置して粘土の吸水を促した後、土壌を振搾して泥状にした。泥状の土壌を透水性測定用筒に充填し、余剰の水が排除されて土壌が自然に沈下するのを待た、沈下して生じた空隙には再び同一土壌を入れる。これらの操作を行う時、空気を排除することと土壌の分離を防ぐことに注意した。かくして円筒内土壌の透水係数を前述の方法で測定する。透水係数測定後の土壌について容積重を測り、孔隙率を算出した。

2) 粒度分布の変化と透水性

上記の実験によって得られた透水係数と孔隙率の値を第6表に示した。この表にかかげた土壌を粘土含量、粒度分布曲線のピークの位置、その位置における粒子量の3者によって分類し、同一土壌群毎に粒度分布曲線を作図し、それぞれの土壌の透水係数と孔隙率を同図の下に併記した。

第6表 合成土壌の透水係数と孔隙率

<table>
<thead>
<tr>
<th>土壌名</th>
<th>透水係数</th>
<th>孔隙率</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-c</td>
<td>82.1</td>
<td>39.6</td>
</tr>
<tr>
<td>d</td>
<td>59.7</td>
<td>38.0</td>
</tr>
<tr>
<td>e</td>
<td>125.1</td>
<td>38.2</td>
</tr>
<tr>
<td>f</td>
<td>855.4</td>
<td>40.4</td>
</tr>
<tr>
<td>b</td>
<td>83.4</td>
<td>41.4</td>
</tr>
<tr>
<td>C-c</td>
<td>12.6</td>
<td>44.3</td>
</tr>
<tr>
<td>d</td>
<td>40.4</td>
<td>48.8</td>
</tr>
<tr>
<td>A-b</td>
<td>5.8</td>
<td>39.0</td>
</tr>
<tr>
<td>b</td>
<td>125.1</td>
<td>38.2</td>
</tr>
<tr>
<td>e</td>
<td>142.2</td>
<td>38.2</td>
</tr>
<tr>
<td>f</td>
<td>26.3</td>
<td>42.8</td>
</tr>
<tr>
<td>C-c</td>
<td>2.9</td>
<td>41.4</td>
</tr>
<tr>
<td>b</td>
<td>146.2</td>
<td>46.2</td>
</tr>
<tr>
<td>d</td>
<td>10.1</td>
<td>45.9</td>
</tr>
<tr>
<td>e</td>
<td>8.6</td>
<td>46.1</td>
</tr>
<tr>
<td>f</td>
<td>25.0</td>
<td>50.1</td>
</tr>
</tbody>
</table>

土壌名の記号の意味：1, 2, 3, 4, 5 は粘土含量が 3, 5, 7, 9, 15% A, B, C, D は粒度分布曲線のピークの位置を示し、0.500, 0.560, 0.178 の 3 種類、関係曲線の位置による粒度分布曲線の透水係数に影響を及ぼす。孔隙率を比較した時の粒度分布曲線を示している。孔隙率の高さは土壌の粒度分布曲線の変化によって変化する。実測値は粒度分布曲線のピークの位置を 0.562 mm の 4 種類の土壌について粒度分布曲線と透水係数および孔隙率を比較した結果である。この図は、曲線のピークの高さすなわち同一粒度の粒径が高くなるに従って、透水係数は次第に低くなり、粘土量が減速限（この場合が 25%）を越えると、透水係数の値は逆に高くなることを示している。孔隙率の変化も透水係数と同様な傾向を示す。
様々な傾向を示した。

次に粘土含水率とピークの高さが一定で、ピークの位置を変化させた場合を第4図で検討する。第4図は粘土が5%で曲線のピークの高さが一定で、ピークの位置が異なる4種の土壤について、粒度分布曲線と透水係数、孔隙率を比較したものである。この図によると、粘土含水率とピークにおける粒度が同一であっても、曲線のピークの位置が粒径の大きな方向に偏ると従って、透水係数と孔隙率は次第に低下する傾向を見ることが出来る。粘土含水率15%まで順次に増加させた場合も3%に減少した場合も全く同様であった。

さらに曲線のピークの位置と高さを一定にして、粘土含水率を変化させた場合は第5図であって、粘土が少なくなければ透水係数は高く、孔隙率は逆に減少することを示している。しかし粒度分布の状態如何によっては、粘土
松尾・佐藤：水田土壌の透水性について

水田の減水深，浸透量
山崎不二夫*

1. 水田の減水深

水田にタンクった水は，イネの根の吸水，水面蒸発，
土中への浸透によって次第に減水深を減少してゆく。
この水深の減少を減水深とよび，「この水田は日減水深何mm」というように，水田の用水量をあらわす一つの
方法として用いている。

イネの根の吸水量**は，イネが生育するために生理的
に必要な水量で，その量はイネの品種や生育段階によっ
てもちがい，また気象条件や土壌条件によっても変化す

* 東京大学農学部 昭和35年7月27日受理
**根の吸水量と水帯流変動とは大差ないので，水帯流変
動を減水の構成要素とする場合が多い。

第1表 水田業面間蒸発量（mm/日）

<table>
<thead>
<tr>
<th>地域</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>上中下</td>
<td>上中下</td>
<td>上中下</td>
<td>上中下</td>
<td>上中下</td>
</tr>
<tr>
<td>北海道</td>
<td>4</td>
<td>5</td>
<td>6~7</td>
<td>6~7</td>
<td>6~7</td>
</tr>
<tr>
<td>青森</td>
<td>4~5</td>
<td>5~6</td>
<td>5~6</td>
<td>5~6</td>
<td>5~6</td>
</tr>
<tr>
<td>北海道</td>
<td>4~6</td>
<td>8~9</td>
<td>8~9</td>
<td>8~9</td>
<td>8~9</td>
</tr>
<tr>
<td>神奈川</td>
<td>4~6</td>
<td>6~7</td>
<td>5~6</td>
<td>5~6</td>
<td>5~6</td>
</tr>
<tr>
<td>近畿</td>
<td>4~6</td>
<td>4~6</td>
<td>4~6</td>
<td>4~6</td>
<td>4~6</td>
</tr>
<tr>
<td>九州</td>
<td>4~6</td>
<td>6~7</td>
<td>5~6</td>
<td>5~6</td>
<td>5~6</td>
</tr>
<tr>
<td>全国</td>
<td>3~5</td>
<td>4~6</td>
<td>6~8</td>
<td>4~6</td>
<td>4~6</td>
</tr>
</tbody>
</table>

備考 水資源法木畑用水（科学技術庁農業局）より引用

引用文献
1) 松尾英彦・佐藤雄明：水田土壌の透水性について，
 第1報 測定方法とその検討，第2報 現地土壌の透水性，
 九州農試試報，5，259-276 (1959)，第3報 合成土壌
 による実験結果と同様に，粒度分布
 の影響を考慮した透水係数の計算方法
 を提案（1959）
2) BLOODWORTH, M. E. and COWLEY, W. R. : The
 use of undisturbed soil cores for permeability
 and infiltration determination. Agron. Jour.,
 43, 4-9 (1951)
3) WENZEL, L. K. : Methods for determining perme-
 ability of water-bearing materials with special
 reference to discharge-well methods. Geological
 pp. 192 (1942)
4) 佐藤正一・船橋義成：水田用水量の実用的研究
 (1)，九州農試試報，2，161-177(1953)