放牧草地の土壌の物理性について

高畑 滋*

1. はじめに

永年草地上では土壌を耕起することがない。さらに放牧用草地上であればそれ以上の耕起が伴うため、一
種独特な土壌の状態を示すことになる。このような草地土壌の特異性は、同じ栽培地土壌のなかでも、栽培林地、
畳地、水田土壌などの分類と同じレベルにあるものとみられる。草地土壌の特異の大部分のものが、不耕起であ
ると同様に、家畜の耕起とその原因が考えられるので、
放牧草地の土壌の物理性を問題にするためには、草地土壌
の本質の究明に近づく筋道であると思われる。

草地は一種の無理生産の場であり、牧草の収穫が最終
目標ではなく、それを利用した家畜の生産が目的となっ
ている。そのため草地の評価を正しく行うことがむず
かしく、研究の立ち遅れもこの面からきている。家畜と
の関係においてははじめて存在する草地では、もっと「踏
みいかた土壌」に対する研究がすすめられてもよいので
はないかと思われた。各分野からの助言がいった

<table>
<thead>
<tr>
<th>深さ</th>
<th>NZ 禁牧区</th>
<th>NZ 放牧区</th>
<th>永年利用草地</th>
<th>トウモロコシ畑</th>
</tr>
</thead>
<tbody>
<tr>
<td>0cm</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.9</td>
<td>1.6</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>1.6</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
<td>1.1</td>
<td>1.3</td>
<td>2.5</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.5</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>25</td>
<td>0.7</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>depth</td>
<td>禁牧区</td>
<td>放牧区</td>
<td>禁牧区</td>
<td>放牧区</td>
</tr>
<tr>
<td>0-3</td>
<td>*0.77</td>
<td>*0.72</td>
<td>*0.93</td>
<td>1.06</td>
</tr>
<tr>
<td>2-4</td>
<td>*0.88</td>
<td>*0.88</td>
<td>1.02</td>
<td>1.17</td>
</tr>
<tr>
<td>Silt + clay</td>
<td>73</td>
<td>79</td>
<td>54</td>
<td>68</td>
</tr>
</tbody>
</table>

Howard, K. O. (1969)

<table>
<thead>
<tr>
<th>Location and depth (inches)</th>
<th>Grazed plots</th>
<th>Exclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>Late</td>
<td>Early</td>
</tr>
<tr>
<td>SWALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.65</td>
<td>1.03</td>
</tr>
<tr>
<td>1-2</td>
<td>1.01</td>
<td>1.06</td>
</tr>
<tr>
<td>2-4</td>
<td>1.07</td>
<td>1.11</td>
</tr>
<tr>
<td>4-6</td>
<td>1.12</td>
<td>1.14</td>
</tr>
<tr>
<td>Ave.</td>
<td>1.04</td>
<td>1.08</td>
</tr>
<tr>
<td>UPLAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>1.19</td>
<td>1.22</td>
</tr>
<tr>
<td>1-2</td>
<td>1.20</td>
<td>1.24</td>
</tr>
<tr>
<td>2-4</td>
<td>1.20</td>
<td>1.24</td>
</tr>
<tr>
<td>4-6</td>
<td>1.22</td>
<td>1.24</td>
</tr>
<tr>
<td>Ave.</td>
<td>1.20</td>
<td>1.24</td>
</tr>
</tbody>
</table>

* 北海道農試 草地開発部

図－1 福根県農試大根放牧場表面土壌の硬度

* 北海道農試 草地開発部

1) 土壌硬度

現地ではまず第一に観察されるのが土壌硬度であるが、
当然のように放牧によって著しく高まる。図－1の大根
放牧場は、每夜放牧を拡張して牧草で仕切らない全期

だければ幸いである。

1) 土壌硬度

現地ではまず第一に観察されるのが土壌硬度であるが、
当然のように放牧によって著しく高まる。図－1の大根
放牧場は、毎夜放牧を拡張して牧草で仕切らない全期
放牧草地の土壌の物理性について

表-4 16年目の草地

<table>
<thead>
<tr>
<th>土壌相</th>
<th>放牧地</th>
<th>耕作地</th>
</tr>
</thead>
<tbody>
<tr>
<td>容積率 %</td>
<td>8/100cc</td>
<td>147.7</td>
</tr>
<tr>
<td>酸性度</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

放牧であったので、一様に放牧されている。

表-5 放牧地土壌の潮性状図用（粒径百分率）

<table>
<thead>
<tr>
<th>粒径</th>
<th>2.0 mm</th>
<th>2 ~ 1 mm</th>
<th>1 ~ 0.5 mm</th>
<th>0.5 ~ 0.2 mm</th>
<th>0.2 ~ 0.1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>初年目</td>
<td>2.21</td>
<td>3.35</td>
<td>9.07</td>
<td>12.88</td>
<td>3.22</td>
</tr>
<tr>
<td>2年目</td>
<td>3.71</td>
<td>4.92</td>
<td>8.42</td>
<td>11.55</td>
<td>1.21</td>
</tr>
<tr>
<td>3年目</td>
<td>2.82</td>
<td>6.25</td>
<td>11.51</td>
<td>10.66</td>
<td>2.08</td>
</tr>
<tr>
<td>8年目</td>
<td>6.00</td>
<td>9.25</td>
<td>9.86</td>
<td>8.20</td>
<td>6.74</td>
</tr>
<tr>
<td>16年目</td>
<td>13.89</td>
<td>13.00</td>
<td>9.47</td>
<td>2.41</td>
<td>2.41</td>
</tr>
</tbody>
</table>

表-6 土壌構造の安定度（通気係数/透水係数）

<table>
<thead>
<tr>
<th>層位</th>
<th>作目</th>
<th>普通作物</th>
<th>原木</th>
<th>牧草地</th>
</tr>
</thead>
<tbody>
<tr>
<td>上層</td>
<td>2.40</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下層</td>
<td>1.63</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

透水係数は、24時間浸水後のものについて測定したための概要値となっているようである。放牧草地ではなくてもトラクタが年々浸水する後であっても、同じように硬度が増す（表-1）。

3）土壌三相

表-4は、造成後16年を経過した草地での測定値であるが、同じ年に造成して、以後ずっと放牧と牧草と合わせて利用している周囲そのままで放牧の影響を知ることができよう。これによれば、固相と液相が増し気相が減るという特徴がみられる。図-3は北海道土幌町の国営大規模草地のものであるが、傾向がみられる。図-4は、放牧地の試験地のデータで、放牧強度が増すにつれて初期特徴がよくあらわれる。これから、一年間のうちでは、放牧期の終わりに高くな、春には戻る傾向があり、年数と放牧強度によってある平衡に達するようである。

4）土壤水分

ある土壤では固相が増せば、液相が増すことが知られている。また、これとは構造が変わって間隙の性質変わるからだろうが、有効態水分量も増す。通気係数/透水係数を土壌構造の安定度を示すものとして、水田が耕作立てで測定した結果によれば、草地土壌は非常に安定した構造を持つといえる（表-6）。しかし、間隙の減少に伴って浸透能は明らかに減少するから、降水量を保持する割合は少なくなるが、それを利用して役割が広がると考えられる。土壌が有効な状態で保持する能力は強いということになる。
5) 通気

踏みかためにより気相が減るが、気相を隔として行なわれる通気がどのように変化するか、また、土壤における通気が作物の生長にどのような意味を持つのか個別では少なない。土壤空気を窒素ガスによっておきかえた実験では、他の作物を痕跡のないイタリアンライブラは逆にわずかな気相を増加させたりされる。地面面をパラフィンで被覆して解消的に通気を抑えたものでも、イタリアンライブラは影響を受けずに生育することができた。

気相率の低下が作物生育の制限因子になるとして、気相率の下限を論じた報告があるが正確な下限はいえない。それは、土壤によって同じ気相率でも意味がちがうからで、より作物生育に限ったある「通気」の状態について問題にしなければならない。今まで通気係数と一相気相係数D/Daなどが測定され、まだ作物生育の上での意味づけは行われていない。また、牧草のなかには、米穀のような沼沢作物にみられる根の皮層の部分が崩壊しgasの通気を有害な形態になっているものが多くみられるから、その通気性の必要性が少ない心がみられる。このような根の形態は、通気不足に対

表-7 土壤 moisture in virgin and grazed prairie.

<table>
<thead>
<tr>
<th>Sation</th>
<th>Decimeter horizons</th>
<th>Wiltling * coefficient</th>
<th>Mar. 17</th>
<th>Apr. 28</th>
<th>June. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgin</td>
<td>1st</td>
<td>8.7</td>
<td>20.4</td>
<td>12.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>2st</td>
<td>8.1</td>
<td>19.9</td>
<td>13.8</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>7.7</td>
<td>19.2</td>
<td>14.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>4th</td>
<td>8.7</td>
<td>19.3</td>
<td>14.9</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>5th</td>
<td>8.2</td>
<td>18.6</td>
<td>15.3</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>6th</td>
<td>8.4</td>
<td>18.4</td>
<td>15.8</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>7th</td>
<td>8.1</td>
<td>17.0</td>
<td>15.8</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>8th</td>
<td>8.1</td>
<td>17.0</td>
<td>15.8</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>9th</td>
<td>7.5</td>
<td>17.4</td>
<td>16.0</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>10th</td>
<td>7.0</td>
<td>17.1</td>
<td>16.0</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Grazed	1st	8.8	32.2	28.0	6.4
	2nd	9.7	33.0	26.0	8.8
	3rd	8.4	30.2	26.6	8.1
	4th	7.9	33.8	27.4	9.3
	5th	7.0	37.4	29.5	11.0
	6th	7.2	39.4	29.8	12.0
	7th	7.9	40.0	25.0	13.4
	8th	8.2	26.8	24.3	16.3
	9th	9.3	23.6	29.7	16.6
	10th	9.5	27.6	21.9	17.1

- Calculated from the hydroscopic coefficients
Daubenmire, R.F. and Colwell, W.E. (1942)
放牧草地の土壌の物理性について

表11 土壌処理が土壌の物理性および牧草の生育におよぼす影響

<table>
<thead>
<tr>
<th>Nominal topsoil density (g/cc)</th>
<th>Leaf No.</th>
<th>Tiller No. at end of trial</th>
<th>Green wt (g)</th>
<th>Dry wt (g) and S.E.S</th>
<th>Soil measurements*</th>
</tr>
</thead>
<tbody>
<tr>
<td>middle of trial</td>
<td>end of trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>4.0</td>
<td>10.3</td>
<td>4.5</td>
<td>0.455</td>
<td>0.087±0.007</td>
</tr>
<tr>
<td>1.05</td>
<td>4.0</td>
<td>9.3</td>
<td>3.8</td>
<td>0.346</td>
<td>0.074±0.007</td>
</tr>
<tr>
<td>1.10</td>
<td>3.2</td>
<td>7.2</td>
<td>3.2</td>
<td>0.296</td>
<td>0.066±0.007</td>
</tr>
<tr>
<td>1.13</td>
<td>2.8</td>
<td>5.2</td>
<td>2.2</td>
<td>0.108</td>
<td>0.023±0.003</td>
</tr>
<tr>
<td>1.17</td>
<td>3.2</td>
<td>6.7</td>
<td>2.8</td>
<td>0.222</td>
<td>0.053±0.003</td>
</tr>
<tr>
<td>1.20</td>
<td>2.8</td>
<td>5.5</td>
<td>1.2</td>
<td>0.082</td>
<td>0.024±0.003</td>
</tr>
</tbody>
</table>

*Soil measurements

Core-test results on surface 4 cm of soil

<table>
<thead>
<tr>
<th>Soil dry density (g/cc)</th>
<th>Air-space % of soil volume</th>
<th>Soil moisture content (dry weight basis %)</th>
<th>Intrinsic gas diffusivity (D/Do)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured on cores</td>
<td>calculated from nominal density</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>16.8</td>
<td>21.4</td>
<td>38.9</td>
</tr>
<tr>
<td>1.08</td>
<td>7.2</td>
<td>10.6</td>
<td>45.4</td>
</tr>
<tr>
<td>1.14</td>
<td>8.7</td>
<td>13.0</td>
<td>39.4</td>
</tr>
<tr>
<td>1.16</td>
<td>1.8</td>
<td>4.7</td>
<td>44.7</td>
</tr>
<tr>
<td>1.22</td>
<td>5.4</td>
<td>8.9</td>
<td>38.1</td>
</tr>
<tr>
<td>1.20</td>
<td>6.4</td>
<td>14.0</td>
<td>31.9</td>
</tr>
</tbody>
</table>

Gradwell, M. W. (1964)²⁴

表12 Results of trial with established ryegrass Plants (Planted 30 Sept. 1963; cut taken 6 Nov.; gas applied 8 Nov.; cuts taken 17 Dec. and 30 Jan. (1964)

<table>
<thead>
<tr>
<th>Dates of Measurement</th>
<th>Plant measurements</th>
<th>Roots dry weight (g/plant)</th>
<th>Soil flushed with nitrogen (g/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Nov. Gas Applied here</td>
<td>0.069</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>17 Dec.</td>
<td>0.137</td>
<td>0.142</td>
<td></td>
</tr>
<tr>
<td>3 Jan.</td>
<td>0.061</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>30 Jan.</td>
<td>0.078</td>
<td>0.081</td>
<td>0.286</td>
</tr>
</tbody>
</table>

(No difference in top weights was significant) (Difference in root weights was significant, P=0.02) Gradwell, M. W. (1967)²⁵

するのであるから、採食しやすい高さ、踏み倒しによって無駄でにくい草型などが望ましいわけで、これらは多収獲要因とは反対する。いままで、放牧が植生にはマイナスにしか働かないように思われていたのも、収量という点からだけみているので、その他の形態についてみれば、管理しやすい形になることがわかる。放牧によってもたらされる土壌の物理的変化が、草丈短く、密度の高い草地を生み出していく過程について今後追究する必要がある。

7) その他の問題

草地を造成する場合にも条件によっては、不耕地でおこなうことが多い。野草地に牧草を定着させるのに、前植生の除去、牧草種子を土壌に密着させるなどの措置が必要であるが、このような条件をいちどに満足させるものとして、家畜を放牧しながら播種、重牧牧法とか輪耕法といわれる簡易造成法がある。この方法では、家畜は造成の手段として使われるので、できるだけ早くぎまりが望ましい。そのためには、土壌の物理性の面から、ストッキングの程度に対して一つの指標を与えられることが望ましい。

牧草が土壌侵食に強い作物であることは、広く認められているが、千ヘクタール規模の草地になるとまた問題になっている。植生が密で土壌が放牧によって十分踏みかえられたような草地では、浸透能が極度に低くなり、少し降水量が多いと、表面流水がおおたかしい量になることが観察されている。もし、過放牧などで地表面が露出していればまたカリ－侵食を受けることになる。また、草生化した結果、牧草内のもおかれたという例も少なくなく、これは造成時にあらかじめ予想された浸透能から割り出して、必要な面積の水源涵養林をとらなければならないであろう。一つの牧場を設計し造り、維持していくということは、現在の農業の知識のすべてを必要とする大変大きな仕事である。道路一本にしても、家畜の習性や、乾燥整製作業と無関係でできるものではなく、各分野の密接な連携があってはじめて可能なものである。今ままでのところ、農業土木の面からの視点が足りなかったように思われるので、関心を持っていただきたくて問題提起をした次第である。

なお、適切な指導とご校閲をいただいた草地第一研究室長早川博士に感謝する。
参考文献

1）北海道農試草地開発部：ホフ栽培法による草地造成に関する試験成績（1964）
2）Howard, K. O.: Soil Porosity and Bulk density on Grazed and Protected Kentucky Bluegrass. Range in the Black Hills, Range Manage. 1380—86. (1960)
4）旱川, 篠本：根刈り地方火災灰地における牧草地土壌の理化学的特性とその施肥法に関する試験 第5報 北海道立農試葉第7号（1961）
5）開発農試地試験所：大規模草地施行法土壌調査報告書（1967）
7）Blydenstein, J.: Root Systems of Four Desert Grassland Species on Grazed and Protected Sites. Range Manage. 19, 2. (1966)
11）高橋, 三井, 島村, 平野：牧草地の播種床造成に関する研究 第2報 牧草の生育に及ぼす土壌の粒径の大きさならびに土壌の圧密の影響 著訳報告15, 7-14. (1967)