農業機械と土壌水分量の関連について

八木茂

農業機械で土を対象とするものは農業用車両の走行性、耕作（ロータリ耕、プラウ耕）、田植機などがある。ここではトラクタの走行性、ロータリ耕、プラウ耕について考えてみる。

I. トラクタの走行性

1. 土壌の水分量との関係

土壌水分量を合水比で表わし、トラクタ無負荷走行時の車輪沈下量との関係は図1のようになる。合水比の増加にしたがって沈下量も増加するが、土壌の種類による違いがある。

この合水比をコンシュテンシー指数によって表わすと図2のようになる。コンシュテンシー指数が1より大きくなると沈下はほとんどの起こらない。

牽引荷重走行時の走行性能を進行低下率50%ときの牽引力を機体総重量で割った牽引比によって表わし、この牽引比と合水比との関係は図3のようになり、牵引比は塑性限界付近で最大となる。液性限界よりも合水比が大きくなると急激に減少している。

![図3 合水比と牵引比](image1)

![図4 コンシュテンシー指数と牵引比](image2)

合水比とコンシュテンシー指数で表わせば図4のように、各土壌においてもコンシュテンシー指数が1付近で最大になっている。牽引比が0となるコンシュテンシー指数は土壌の種類によって異なっていて、粘土含有量の多い土壌の方が大きい値を示している。

以上土壌水分量と走行性との関係について述べてきたが水分量のみで判断することは無理があると思われる。

つぎに水分量と2次の関係にある土壌の物理性との関

*農業機械化研究所
農業機械と土壌水分量の関係について

2. 土壌の物理性との関係

土壌の物理性と走行性能との関係を求めるために、農機案件式土壌抵抗測定器S R—2型によって求められる土壌の物理性、すなわち円錐貫入抵抗、矩形板沈下量、剪断抵抗について考えてみる。

（1）円錐貫入抵抗と牽引比　図—5のような関係になり、小型円錐では1.5〜2.0kg/cm²程度で走行不能になっている。牽引比の値は土壌の種類によって異なっている。

（2）矩形板沈下量と牽引比　図—6のようにになり、土壌が乾燥しているときには矩形板沈下量が小さくほとんど0になるので牽引比との関係が不明瞭になる。また土壌種類による差がある。

（3）剪断抵抗と牽引比　図—7のように各土壌間の差はほとんどなく、ほぼ同一曲線上にブロットされる。剪断抵抗が0.3kg/cm²付近で走行不能となっている。牽引比の推定には剪断抵抗によって行なうことが適当であると思われる。

剪断抵抗と牽引比との関係を、普通タイヤとハイラグタイヤについて図示すれば図—8のようなになる。これによれば走行不能となる土壌条件はハイラグタイヤでも普通タイヤでも変わりがたいが、土壌が固くなるにしたがってハイラグタイヤの効果があらわれてくる。そして剪断抵抗が1.0kg/cm²以上になれば両者の差はまたなくなってくる。したがって、ハイラグタイヤは初転域地における走行を可能にすることももちろん中程度に浸っている土壌（剪断抵抗で0.4〜1.0kg/cm²）での牵引力の増大に効果があるものと思われる。

以上走行性能についてみてきたが、走行性と水分量とは直接的な関係はなく、むしろ水分によって土壌の物理性が変化して、それによって走行性が影響を受けるものと思われる。
土壌の物理性第24号

Ⅱ．ロータリ耕

1. 土壌の水分量との関係

ロータリ耕作における耕作土と含水比との関係を図10のように示した。含水比が増加すると、耕作土では平均土壌の含水比66%に至るまで曲線を示す。土壌の物理性をと比較すると、含水比が高いと土壌の物理性が悪くなる傾向がある。

図10 含水比別の耕作土と平均土壌

2. 土壌の物理性との関係（図11）

土壌の物理性とロータリ耕作土の含水比との関係を図11に示す。ここでは耕作土の所要トルクを耕作断面積で割った比トルクで表わしている。

(1) 小型矩形板沈下量と比トルクの関係は双曲線になり、土壌による違いはないが矩形板沈下量が0に近づくと比トルクの推定による問題がある。

(2) 円錐貫入抵抗との関係は各土壌とも同一曲線上に表わされる。

(3) 剪断抵抗と比トルクの関係はほぼ直線に分布している。したがって所要トルクの推定には取扱いが便利である。

図11 土壌の物理性と比トルク

図12 含水比と比抵抗

図13 コンステンシーキ指数と比抵抗
III. ブラウ耕

ここではブラウの牽引抵抗を耕作断面積で割った比抵抗によって表わし、比較検討してみる。

1. 土壌水分量との関係

各土壌における含水比と比抵抗との関係を図-12に示す。これをコンコースシーニー指数で表わせば図-13のようなになり、埴土、塯塚土においては0.5付近で抵抗が最小の値をしめしている。砂壌土、輕塚壌土についても同様なことがいえるのではないかと思われる。

2. 土壌の物理性との関係

(4) 小型矩形板沈下量と比抵抗との関係は含水比が塑性限界に近づくにしたがって矩形板沈下量が0に近づくために塑性限界以下の含水比での比抵抗がおかしくなる。

(5) 円錐貫入抵抗と比抵抗との関係は下に凸な曲線を示し、土壌の種類による違いがある。

(6) 剪断抵抗と比抵抗との関係は円錐と同じような傾
图-18 円錐貫入抵抗と塑性指数による修正比抵抗

图-19 剪断抵抗と塑性指数による修正比抵抗

向があり、やはり土壤による比抵抗の違いがある。
これらの関係では土壤の種類による違いがあるが、これらをよくみると粘土含有量の多いものほど、同一測定値に対して、大きい抵抗値を示しているように思われる。
これは土壤の粘りによるものではないかと考えられる。
この粘りを変すのに粘着点のないネバッキ境界と呼ばれているものがあるが、ネバッキ程度はコロイドの量によって異なるものであるとされている。このコロイドをいまま、粘土以下の粒度の含有量と放替えて、粘土以下の粒径（ここでは0.005mm以下）によって各土壤間の比抵抗の差を生じるものと仮定した。そして測定の比抵抗から粘土以下の粒径がしめる比抵抗を差引いて、それを粘土含有量による修正比抵抗として表す。これを式で表わせば次式のようにになる。

\[F_i = F_0 \left(1 - \frac{C}{100}\right) \] \hspace{1cm} (1)

\(F_i \): 粘土含有率によって修正した比抵抗 (kg/cm²)
\(F \): 測定比抵抗 (kg/cm²)
\(C \): 粘土含有率 (％)

この粘土含有量による修正比抵抗と小円錐貫入抵抗や剪断抵抗との関係を図示すれば図-15、図-16のようにになり、ほぼ同一曲線によって表わされる。これによれば剪断抵抗の方が値のばらつきが小さいようである。

また Russel などがいうように、粘土量と塑性指数との間に一定の関係があるといわれている。そこで今回使用した土壤について塑性指数と粘土含有率との関係は図-17のようになる。計算式は図中に示すとおりである。

これを前述の(1)式に代入して塑性指数による修正比抵抗を求めて図示すれば、図-18、図-19のように同一曲線に修正することができる。

結論

これらの方法によって比抵抗の推定ができるが、粘土含有率や塑性指数が分らない場合には問題がある。したがって現場で直接簡単な方法で粘土含有率や塑性指数が測定できる測定器が必要である。