質疑応答と総合討論

司会 八幡敏雄（東大農）

講演者
有村光洋（九州農試） 松口竜彦（農試研） 中村政時（東大農）
須藤清次（茨城大農）

（木下・北海道農試） 土壌物理研究会には自分の研究の一場面を発表させるために加入されている方が多いと思思います。多分、本日の5題の講演の全部を理解された人は少ないと思いますので、気軽に御意見、御質問を受けてと思います。なお時間の都合で、今日の講演の順序に従って進めてまいります。

（湯村・野菜試） ① ナミニ・トビムシのふんは粗しよう有機物が大部分だすると、これら微小土壌動物の土壌構造への寄与の程度はかなり小さいと思うだろうと考えられます。② ナニ・トビムシ類とミズ類との相生する土壌の深さは一般的にはどちらか深い。

（有村） ①の御質問ですが、微小土壌動物の1個体の作用はミズなどの大型土壌動物にくらべると、土壌構造に及ぼす影響は小さいと思われます。しかし、自然状態の表層内には相当数（×10^3/m）とあらわれていますのダニ・トビムシ類のような小型土壌動物が生息していることから、これらの相生・相消を微生物による分解で大型土壌動物による摂取・栄養・運搬および排泄物…との土壌微生物系の複雑な変化を考えますと、微小土壌動物といえども、直接・間接による微生物分解、土壌構造に及ぼす影響は無視できないものと思います。御質問ですが、一般的にはミズ類の方が大きいでしょう。

（佐久間・北海大） 排泄物中の分離の安定性あるいは崩壊の状態を微細形態の方法で、どの程度明らかにできるか。

（有村） 微小土壌動物の場合は土壌中における微小土壌動物の種類と排泄物の形態との関係や、土壌中の微小動物排泄物の分離法が、まだ明確にされていないようですので、簿片観察からだけでなく排泄物の安定性・崩壊過程について考察するには困難なよう思います。しかし、マイケルズ氏の方法、たとえばミズ類の排泄物などを微細形態の方法や他の理化学的方法を適用し、かなりよくわくわくしらべられると思います。

（山口・道立中央農試） Aa 層、Aa 層、A 層中の各種土壌動物を B 層または C 層のような有機物の少ないところそれぞれ繁殖させて、土壌構造の造成に役立てることができないか。

（有村） ミズ類を繁殖させて A 層の土壌構造の改善をねらった試験をおこなわれていることは聞いていますが、下層土にたいしてはよく知りません。

（湯村・野菜試） ミズ類のふんに無機粒子が多いのにに対して、ナミワムシ類のふんには無機粒子はないのか。

（有村） 一般にナミ・トビムシ類は腐植化のものが多いといわれています。土壌肥沃上、一般にリター層内に生息するある種のトビムシ類の内は植物遺体が大半で、そのほか菌糸類半月、魚を含んでいるとのべています。また、ナミ類のふん中には検討した限りでは、無機粒子はきわめて少ないと思います。

（佐久間・北海大） ①微細構造を検査する手法によって、既存土を含めた土壌構造およびそれに対する地中動物の影響の dynamics などをどの程度追求できるか。②構造部位間の amorphous matter の効果はどのような方法でチェックするか。また、thin section の調査の際、この変化をする可能性は？

（有村） ①の御質問ですが、既存土壌については調査していないのでわかりませんが、現在まではっきりとした資料を導きたいことは、一般的にその土壌内での活動している土壌動物の排泄物の形態と、植物遺体の分解程度などの土壌微細構造の変化を包括的にしらべることによく、それらの影響を知ることができると思います。②の御質問ですが、現在のところ、微細構造観察方法だけから構造部位間の amorphous matter の効果を知るのには困難なようあるため、したがって、同化した資料について説明を整せて、微細構造の変化を検査したく、化学的方法によって定量的に補足することにより、ある程度の程度を推察することができると思います。また、現在使用している thin section 作製法ではこれら物質が変化する可能性は考えられます。

（多田・農試） ①プレパラートの作り方とチェックの面積②因子（土壌構造生成のため）をいかに区分するか。たとえば土壌動物植物の影響はどのようにわかるか、具体的に教えてほしい。
土壌の物理性 第 28 号

（有村）①の御質問ですが、土壌薄片作製法についてはベドロジスト誌（5巻 1 号）、土壌誌（33巻 4 号）を参照して戴きたくと思います。チェックの面積は観察した全薄片面積がおよそ 100 cm²程度になるまでです。②の御質問ですが、土壌薄膜の影響は植物体内または生物間、孔隙内における各種土壌熟物の挙動、それら熟物の形態と量、植物体の分解程度などを観察すること。また植物体の分布状態、土壌孔隙の形態と量、土壌酸礆度のちもつきなどより、その層位における生物の活動程度および微細構造に及ぼす影響を考察しています。

（佐藤・愛媛大学）ミズカは排泄粘液？のようなもので土壌を小粒化するように考えていたところ、排泄物そのものは植物質と鉱物質の混合した固形をなす一方、ミズカ（排泄）の周囲の土壌はむしろ小粒化されているような写真を見た。これは寄生化することによってむしろ頑雑を小粒化するのでしょうか（写真的スケールの問題で小粒だったのでかもしれない）。

（有村）ミズカはもみをつくるのに自分の周囲の土壌を食べ込んで排泄しながら、穴をつくっていくといわれています。この写真の場合はミズカの例ですが、この場合でもミズカの周りはそれらの排泄物で小粒化したものです。

（木下・農業試）微細構造を顕鏡した結果をどのように分類するつもりか。

（有村）現在のところ、Brewer や Kubiena の分類方法を参考にしたいと思っています。

（久保田・農業試）見せて頂いた写真によると、赤黄色土の土壌が静止であるという印象を与えるが小動物の観察などを行った結果、これとも一部に表層では浸水状態が発達していると理解しているからです。

（有村）一般的にみて、自然状態の赤黄色土の表層の微細構造は下層土のそれにくらべて海洋状構造（もちろん、発生、土壌動物の活動程度などにより）その発達程度は起こっていますが）が発達していると思えよいと思います。

（木下・農業試）細菌は地中に広がっているというが、植物中に観察しているのか、あるいは土壌粒子に吸着されているのか。また細菌は有機物をもっているのか。

（松戸）細菌は物質培養において、固形物の存在で繁殖しやすいと促進される。土壌孔隙の中での細菌の分布をみてみると、土壌粒子周辺にコロニーを作っていることが観察される。その原因は、土壌粒子表面での養分濃縮による間接的なものと、細菌細胞を直接的に吸着する場合がある。細菌細胞の生産については、イオン交換樹脂等への吸着現象を把握されているが、直接的な知見は少ない。

（八幡・東大農）インキュベーションを終了した状態の土壌についてpH水分分布曲線を改めてかたって、孔隙量が微生物増殖によってどうかかったかを知ることはできないものか。

（松戸）本実験では調べていないが、細菌の増殖による土壌孔隙の目づまり問題とも関連するのでおもしろい御意見と思います。ただ測定のための洗浄過程で水分とときに微生物細胞が移動する可能性があるので、この点をどう解決するかが問題でしょう。

（岩田・農業試）土壌中の空気は、微生物にとって単なる住むための空気と考えてよいのか。土壌表面に存在する選択現象が微生物にあたえる影響は大きいか。

（松戸）木下氏の御質問とも関連することが、固形表層では水分の気相、代謝排出物、抗生物質の混入、微生物細胞の物理的、酸素の生理、微生物細胞の機能に様々な影響を及ぼす。しかし一般的には、イオン交換樹脂からガラス短まで、固形表面的存在が細菌細胞の増殖を促進する効果がみられている。土壌孔（孔隙）の性質、酸素の供給、水分、養分の供給を支配するので、単に住むための空間だけの意味ではない。

（久保田・農業試）茨城県の赤ノポリに腐植がたまらないのは、風速以外に気温土壌に強く発達したミクロアグリゲートが関係していないか。アソノフ質腐壌のアグリゲートは腐植の吸着や微生物活性など何が関係がないか。

（松戸）一般に黒色火山土壌は細菌が少なく、放線菌、糸状菌類のミクロアグリテーションを形成している。腐植の生成にリシン、セルロース、特に前者の関与が大きく、また低分子のグルコース、酢酸のCが短期間のうちに腐植のCに変化することを観察していることから、微生物の関与が大きいと考えられる。火山灰土壌で腐植が生成しやすい原因に、放線菌、糸状菌に富むミクロアグリテーションが考えられる。石沢らは火山灰土壌にラジウム生成性放線菌が多いことを明らかにしている。一方、腐植分解菌として赤ノポリ、キノコなど特殊な糸状菌が報告されているが、赤ノポリに腐植が集積していない原因として、これらの菌の関与も考えられている。

（吉田・新潟大農）①土壌水分の一定容積に対する植物の一定容積は、どの程度であるのか。②土壌水分の移動とともに、菌体も流されるものなのか。

（松戸）①一般的に土壌孔隙が全て細菌細胞で飽和されると仮定すれば 1g 土壌中約 10³g の菌数と考えてよい。実際に土壌の細菌数を検出すれば 10³〜10⁴あるいは、全孔隙量の 0.1〜1% しかしていない。このことから土壌の細菌は、土壌孔隙に固定されているものである。
発生中の微生物は飢餓状態にあると考えられる。①水田土壌の耕作面での微生物の活動を調べた結果では、著者等の観察によれば、水田の耕作面に多量の微生物が含まれていることが明らかである。この現象は、水分の移動とともに微生物の下層への移動の可能性を示すものであろう。

（岩間・岩本両研究者）土壌構造の一部、微生物に対する影響の一つとして、吸収がある。これに対して、微生物はいかなる考えをもつか。

（松村）細菌の化学的活性に対する影響についての考察がある。それによれば、放線菌のpH活性曲線、態度経度活性曲線が相関していることが明らかである。これは主に単一種の細菌の現象であるが、実際の土壌では、植物間で相関する現象が存在する場合もあり、吸収の影響も重要な微生物の役割を果たす、添加作用、食物連鎖の面から把握する必要がある。

（竹下・神奈川研究）微生物生成をおこなう微生物の中でも、放線菌のような細菌が高浸透圧条件によってよいことは何故か。特にどのようなイオンに対してよいか。

（松村）放線菌と放線菌の細胞質の構成物を問うものと思われる。放線菌の細胞質は10〜20μの厚さをもち、主として二アミノ酸の複合体から成っている。これに対し、放線菌の細胞質はprotein、脂質とともに80〜90%が不飽和性の複合体を含む。一時的と断定していられないことが現実性にかかわるためである。イオンの種類については、よくわからない。

（田沼・茨城大島）微生物の微生物土壌構造にあたる影響について考えた。

（松村）土壌の物理的特性に対する微生物の寄与について、いくつかの報告がある。細菌類には、粘着物質（主として polysaccharide）を分泌し、また、放線菌、放線菌の伸長による細胞質の粘着性を含む微生物の活性を検出することができる。しかし、微生物の生成は、時間とともに変化するので、その効果も動的に取る必要があろう。

（岩間・岩本両研究）①微生物の影響によって、放線菌のスケールの大きさ、100cm³のサンプルでは、ゆらぎの問題が生じるが、この点どう考えになっておられるのか。②放線菌はどの物理物質が明らかにうなれば、理論的に計算されるのか。

（中野）微生物の大きさは、私が使ったサンプルでは、砂粒子で0.075mm、細石砂で0.3mm、砂で0.1mmという辺長を持つ立方体で、従いまして、辺長2cmのサンプル（体積は8cm³）を考えますと、砂粒子では10³個、細石砂で10³個、砂では10³個と考えます。10³個程度の微生物の微小量を含むことになります。100cm³のサンプルではこれより1オーダー大きくなるかと思います。ところが、アポガドロ数とくらべれば、この数は非常に小さいものです。たとえば、2・3種類のエリメントで考えたとき、10³個程度の数で最も少ない分布の状態数と状態数の比が最も少ない分布の状態数を単に分布の分布の附近にかかなり縮小できる。

第2節の物質間数、定数は3個使っています。いずれも土壌の間隙に関係するものです。間隙の大きさや形や集合し状況などが土粒子の大きさや形や集合状況から計算出来るものなら、 Sto ホン分布曲線にもとづいてこの定数は算出される可能性があります。

（岩間・岩本両研究）①たえられた条件はなにか、たとえばマクロに測定された密度なのか。②エリメントの孔隙の変化は連続的なのか、不連続なのか。

（中野）間隙的分布を求めると計算のときに使われる条件は、マクロに測定された間隙率がモデル中にそのまま保存されていることをあらわすもので、より、その測定値をあたえる土壌中に想定される値を数値で示すもの、この2つのです。2番目の物質間数ですが、モデル中の微小要素はそれぞれ間隙をもつことにしていますが、この微小要素を間隙の大きさに並べてみたときの間隙の変化は、初めに不連続に考えていますが、その整列をとるとき間隙計算をしますので結局では連続的なものと考えていることになると思います。

（木下・北農研）保存機構について、新たに提案する考え方の背景または理論は、また現在までの保存機構に関する学説と提案する案の位置づけをどう考えておられるか。

（中野）構造の1つの表現形成は、ある間隙の大きさを端面密度関数の形式で表現してみたいという訳のものでこの研究は進められました。さらに、その後にある上は、土をいわゆる物理的層みかたで、そしてその手法で変えてみたいという意図もありました。ついてですが、この際の最初の手法、土と間隙と不連続なように連続的なような物体を、集まりの物体として捉えることを最初にしなくてはならなかったのですが、それがここにあったように思います。この試みは、この研究ではこれが最初のものであると思われます。この試みによって、土をいわゆる保存機構といい内部のようすがตอบきをもって理解出来たというわけではないかもしれません。もちろん、この試みは1つの試みにすぎないことはいまでもありませんけれども、また保存機構
機構という点では、従来の研究結果を全面的に踏まえています。
（土質機械技術研究）土の保水性にあたる因子は多くあります。特に土に含まれている粘土の表面活性性があればある影響は大きいと思われます。今回は粘土についてですので、この点は考えないとして、間隙の大小と、その大小別の存在量の違いが保水性にあたる影響は異なると思われます。この時、土壌を有限の要素に分類してその存在を考えてしまう場合、土の保水性の再現性をどの程度あるかと言えます。

（中野）土の保水性の再現性は、ヒステリシスも含めて計測すると考えます。このモデルであると、たとえば、水が1度脱水されて次に再びそこに水がとれるかどうか、あるいは水温の影響を考慮することは、問題の性格上重要であると思います。また、間隙の問題は水分変化の1ループ上で水分変化が定義した1時点で水のあり方がどうなっているかということを考えると、このモデルはそれを表現する以外のなにものでもありませんからです。モデルは、そのとき間隙充満水と間隙非満水の存在のようすだけを表現しているにすぎないからです。

（高橋・岡山大学）土壌構造自体の収縮膨張によるヒステリシスはどう考えられるか。また、測定の際、メススカスによるもの、収縮膨張によるものと両方のヒステリシスが現われる場合、どのように考えられるか。

（中野）収縮膨張の際、土中の間隙の変化のようすがどうなるか。これを確率密度関数で表現すれば、私の場合、そのティセオの数が変化することで表現されます。一方、マクロ的な間隙量は当然ながら変わります。最終的には、このマクロ的な間隙量だけが計算に関与するものとなります。従いまして、測定中につきついて収縮膨張がみられるときには、その時々の密度のときのマクロ的な全水分量を求め、これを使って計算をすることになります。ヒステリシスがある場合、そのヒステリシスがどのようなループのものかを明らかにすれば必然的にそのループの際の全水分量がわかりますから、それで計算はすすめられると思います。

討 論
（湯村・東近畿大学）固定塩母岩のin situ風化生成物の一次粒子（一次酸化物）の配列のしかたと、母岩の種類、風化条件、深さなどとの間には図-3のような一般的関係が認められるか。

（桑原）一般に容積変化が粒子の移動が少ない深部風化などで、母岩の一次酸化物の方位をinherentateして粘土鉱物化が進んでおり、巨視的な母岩のtextureは保存されている。しかし、一次酸化物の粒子内では、必ずしも二次鉱物の配列が認められるとは限らないようだ。

長石からカオリン酸鉱物に変る場合、ハロサイドの管状状結晶が定方向に配列しているらしい場合もみられるが、fan like typeのカオリノイート結晶がメイダグラフ上に成長している場合もある。雲母等はpsuedomorphカオリノイートになっていることが多いが容積変化があるのでその後の結晶形状はかなりみだされてきている。ポークサイド化したような母岩の強い風化条件下では、物質の出入りが激しく母岩の構造はほとんどこわれきる別の構造が発達する。

一般にmicroな構造と生成条件との間の一般的関係は現在でははっきりしていない。

（湯村・東近畿大学）母岩がその場で粘土化した場合、深層の土壌下で、特に二次鉱物が図-3e, fのように細密な配列をとることは考えられる。

（桑原）最終極めて粗間隙の状態で二次鉱物の配列が形成された後、土圧の増大が生じた場合でない限り、microな構造は変わりにくいと考えられる。長石のようなものは土圧によって風化後押し托される場合があるが、一般に数10m程度の土圧では粘土粒子のつくるmicroな構造は、それほど簡単に折りたたまれることは少ない。セメントの生成やflowしたような部分では極めて効果的に平行配列が成長する。

（久保田・農技研）示された粒子の水中再建モデルは荷重のある粒子のモデルであるが、アフロエンの場合、または等電点再建のモデルはどのようなものか。また、もしアフロエンの表層地質規模の水中堆積物を観察したことがあれば、それを示して欲しい。

（桑原）アフロエンが主としてして構造を作ったような沈積物で、その後の変化（ハイサイドなど）も受けても構造を留めていると思われるものはまだみていない。アフロエンのように脱水過程で性状や形態が変わりやすいものは観察技術上むずかしい問題がなされよう。また、等電点で電気2重層の電位が消えた点で、eage chargeがどうなるかによって構造も変わるであろう。

（久保田・農技研）水中堆積物は圧縮により水が逃げないという条件では、その国相率・仮比重は深さによって異なるか、同じか。

（桑原）非排水条件では圧縮しても圧縮しないので国相率・仮比重は変らない。従って深さ、つまり荷重が増大しても変化しない。しかし、H2Oが粘土鉱物中に結晶水化して固相にとらわれるとか、溶出作用などの化学的な変化は起こり得る。また、蒸発圧縮などによる物理的な変化であるのが現れる可能性があるので注意しなければならない。
質疑応答と総合討論

37

ければならない。

また、非排水の圧縮の場合、水の弾性圧縮分の容積変化は生ずる。間隙水圧は高くなり異常間隙水圧が発生し、固相部分が支える有効圧力に比べてこの水圧が大きくなるような場合にはセメント、流動化現象が発生しやすくなるので、実際にはこの面での影響の考察が必要となる。

（佐久間・北大農）構造形成における歴史性、とくに
diagenesis の意義について。

（桑原）diagenesis には、圧密・せん断変形 cementation、再結晶作用等多様な物理・化学的変化が含まれている。圧密・せん断変形の場合には構造を折りたたみ平行配列にかえて行く。間隙水中のイオンが leaching されて行くような場合、電位 2 重層の発達圧力によって粒子間力が大きくなると考えられるものとでも、一部作られていった構造はなかなか変化しやすいよう。特に active な粘土では分散・膨潤を示すことが知られている。

弱変成作用に近い再結晶作用を伴わない限り、一般の diagenesis の範囲では、粘土鉱物の basic lattice まで変化させることはまれであるとされている。元来の粘土鉱物の集合体を基本構造、化学的な作用によってあまり変らないと考え方がよい。

火山ガラスのような変質しやすい一次鉱物が多く含まれている場合では別である。

（佐久間・北大農）cementing material の効果、clay 粒子表面を coating している物質がある場合の構造 model はどのようなものを考えるか。

（桑原）cementation などは一般に粘土粒子の間隙、接合部に沈殿・充填作用を行う程度だけ構造を大きくかえる程度のこととは期待し難しい。cementing material は粘土粒子接合部に link bond を形成して構造を補強するという説明がされている程度で、詳しいことはよくわからない。アモフェウムのような物質、有機溶媒と結合して、自然の鉱物の link bond を形成したり、粘土鉱物の out growth を促進したりすることも事実考えられる。

coating material の問題についてはあまりよく判っていない。有機物質などがある存在すると粘土粒子間に bridge をかけたりし間隙圧が大きくなるような構造ができることが示唆されている場合がある。

（岩田・畠技研）乾燥して行く過程（養殖過程）におけるメニュスカスの役割がいかに考えられるか。

（桑原）一般に乾燥した土の乾燥過程では、脱水量と土の収縮量が等しいので、粒子の接近、構造の折りたたみが効果的に行なわれていると考えられる。こうした、脱水量と容積収縮量が対応しうるような限界点が、粘土粒子の hygroscopic layer 部分の水分量に近いところで、せん断力が発生、再結晶化が生じる場合、水分の活性変化によっての力が発現するようである。しかし、これがメニュスカスによるものと、吸着土壁層の作用とがどのような形で貢献しているのか明らかではない。

（佐藤・専修大）電気 2 重層に与える温度の影響図で土粒子の表面電荷、イオン、分子中のどれが一番大きな影響因子となるのか、分子中の活性変化によるものかどうか、それは全部関係ないと考える。

（桑原）電気 2 重層の電気ポテンシャルの、その点におけるイオノの濃度に関係する。イオノ濃度は、粘土表面の電場によるイオノが引き寄せられ力と温度によって与えられるイオノの拡散エネルギーなどとの関係において決定して考えられる (Boltzmann の式) ので、温度が上昇すると拡散力が大きとなってイオノは遠くまで拡散しうるとお考えである。

（モトと、図-1は Gouy と Chapman の求めた理論式の対象値だけを変化させた場合の値の変化を図示したものである。

（辻・大林組技術研）土の物理的・化学的性質を論じる際、ゲルを含めたシルトの成分構造中に水が存在して、その相互関係で考えてきた方が良いわけではないという先生の提案で、私たちもまったく同感であります。これと関連して土のせん断応力を論じる時、先生は土の土分として、せん断力とせん断応力を与える力と破壊力とする力を考え、その成分の相対的大小で考えて行くということではしたが、先生は以上の 2 成分は土の均のよって考えておりますか。

（角渕）粘土分が a の表面張力を有するとき、圧力は a で、せん断応力は a の大きさとなる。つまり等力的に外力を除いて、いつも力に 2 つの成分が存在する。土の膨張、収縮の多様な体積変化以外の形を変形、いつも成分が関与し、変形は主にせん断応力によるせん断変形の合計によって起こっている。

（山本・東大農）①一次元一般化フィククモデルを二次元の問題に適用しようとする場合、どのように考えればよいか。②今日述べられる線形理論の現象と、土の破壊の問題とどのように関連するか考えられているか、③土の塑性をどのように考えればよいか。
（須藤）①三次元の粘弾性は山本三三三氏の著書で取り扱われているが、私は十分読みきれない。私の報告は三次元的実験ではあるが、亜細胞等の形態の例をとり、粘弾性体はその粘性抵抗が増加する。問題は強度のばらつきであるが、これは Weibull 分布で処理すればよいと思う。Weibull 分布の物理モデルも調査し、ソリューション導入している。強度試験の Weibull 処理して平均強度を通常の安全率で割ると強度の最低値が得られる。②昭和の研究では塑性とクリップを混合して使用している場合が多い。普通水は土の歪ではクリップが主であって、塑性破壊の接近量が WE 以下であるような水分のときに問題となると思う。

（八幡・東大島）時間が過ぎて、総合討論の時間がなかった。最後に座長として、本日のシンポジウムを総合してみる。土壌構造物は particle の arrangement という一貫性がありますが、中野さんは pore の面を、松口さんは solid と微生物を、有村さんは生物を含めた構造の変化を述べられました。また藤原さんは、particle の orientation と organization の点から arrangement を整理し、須藤さんは構造をやや横断的にみたもの。構造の連続的な breakdown を扱い、力学的取扱いの限界にについて考えを述べられたように思います。

最後にあとは 1 人だけ発言を受けたと思います。

（渡辺・千葉島）現在、土壌構造について、亜粘粒構造の大きさと大きな土壌構造に対して、土壌構造という用語が用いられている。亜粘粒構造とは、どの程度の大きさのものかを示すのか、構造の役割を力学的に入れる。土壌構造の評価の方法については、前にも述べたように、土壌構造は肉眼の観察をもとにして識別するものであるが、大きな違いがあるわけではない。いままでの分類の基準となっているものは、まず土壌の形状で分け、ついてその大きさで分けていく。

日本をもくと語られる構造分類は何か、という質問で、筆者がいままで提案された分類を集め（Zakharov の分類、Dr. Charles Hofstra の分類、Nikifoloff の分類、Kohnke の分類、Scheffer の分類、アメリア土壌研究会の分類、Baver の分類、菅野の分類、近藤の分類、川口の分類、斎藤の分類、林野庁の森林土壌の分類、農林省の各種事業（施肥改善、地力保全など）の分類、経済企画庁の土地分類調査の分類）。これを通覧・検討した結果、これらの集大成が現在提案されている FAO の第 7 次試案に盛り込
まれているように思われる。もちろん、分類法であるからこれにも日本の実状に合わない点が指摘され、日本向きに修正の必要がある。第 7 次試案については、農業研究資料 B8 号（1964），pp. 543～548 に記載されている。

以上のような土質による構造の分類は、あくまで形態による分類であったが、土類の機能面への結びつきが薄いものであり、これの欠陥を補う分類が必要であると考

A 型
特殊状態：粘土
低圧力域に低いピークをもつ
俗称：楊形ピーク

B 型
泥状構造：湿土、洪積土
ピークなし
①上り坂（粘土質のもの）
俗称：①下り坂（砂質のもの）

C 型
塊状（発達低位）構造：
俗称：前低山

D 型
塊状（発達高位）構造：
俗称：前高山

E 型
果物状（発達高位）構造：
俗称：双子山（前高、後低）

F 型
粒状構造：火山灰土
俗称：後円山

孔隙分布特性による土質構造の分類
（木下草案）