実 容 積 法 に つ い て
——その測定対象のふれを測定手段の誤差を中心に——
Some Considerations on the Determination of Sample Volume by the Volumenometric Method.
——On the Sampling, Selection and Measurement Errors.—

木 内 一 巴*

Ⅰ は し が き
実容積法を使いはじめて10年以上たった。測定の対象が自然状態の土壌であったため、複雑で、うねり対象のふれと測定誤差を頭においてかかる必要があった。時にふれが変かったことをもって言っていたが、やっと一つの応はまとめられようになった。実際に現場でこれを使っておられる方が参考になれば幸いである。

Ⅱ 測定対象と測定方法および手段
実容積法は、自然状態のままの土壌三相を、容積と質量の関係でとらえる方法と手段の一つである。測定がそうであるように、この測定の場合も、測定の対象がどのような状態にあり、どのような変化をしているか、変化の状態の変動があるからの測定が求められる。その変化問題として測定が、その端のどこをどのように考えようとしているのかを、方法および手段の上からはっきりさせておく必要がある。

土壌物理の対象である土壌は、その変化を起こさせる因子が複雑であり、因子同士に引き続く作用しあっている。そのため、その変化の過程を含むことができない場合が多い。対象は複雑であり、それにともなう測定者の方法、手段の不適当さから、測定の不明確さ、のほどが広がる。これについては(1)研究目的が対象からずれている場合(2)方法に制約されてて作る場合(3)手段に制約されてて作る場合(4)その他多くの原因による場合がある。この関係を測定上のあやまりと誤差の形で示すとまとまったものがある。古典的には容積誤差だけを問題としてきた。この風俗はまだ残っている。

Ⅲ 実容積法のなかみ
ここでは実容積法を使った実験計画ではなく、測定のなかみを検討する。実容積法は、採土と実容積測定と計算の3つからなりている。

1 採 土
他の容積法が行うと同様に、採土器を使って自然状態の土壌を一定容積切りとり試料とする。切りとり方で同じであれば、どの容積であれども、次点を注意する必要がある。対象の土壌自身100ml当りの重量実容積と数％の微変係数をもってふれていることである。これは人為的に制御できない。そのため採土方法に計画が必要になる。そのよしあしが研究のねらい精度に大きく影響してくる。よく計画された採土試料群では、測定対象のふれと、測定誤差ははっきりわけられる。しかしやむをえないうることの両者が関係しない場合もあるので注意を要する。

2 実容積測定
測定に関係したあらゆる誤差は後で述べるとして、ここでは実容積法の原理について検討する。
一般にA B系が同様に同様で両容積が等しいとき、両系の圧縮率は等しい。この原理は系Bの器壁が空気で作用しないとみなせるとになりつつある。実容積法はこれを応用したものである。いまA系には多孔質を入れその細孔隙または空間が空気と作用する場合はどうであろうか。A系の孔隙空間を含めた全空間が、それのないB系の空間と同容積の場合、両系の圧縮率は必ずしも同じではない。前系の孔隙率が大きい場合は空気と土壌との作用が小さいので問題なく成立するときにとれない。しかしその孔隙率が分子オーダーに近づいて行った場合は、両系の圧縮率は異なることがある。

このような細孔隙中の空気は、その壁に吸着されるなどして気体の性質から異なっているからである。土壌は多
土壌の物理性 第30号

孔質ということに加えて、この土壌に水の入りこんだ複雑な三相系である。土壌が高水分の場合は、細孔隙は水で満たされて、他の孔隙だけが残されるので、土壌の入ったA系とそれの入らないB系との圧縮は同じになろう。図示条件の土壌をこの条件とみなす。ましょより低水分となると、細孔隙が空気を含む前後の作用があらわれるので、両者の圧縮率は異なってくるはずである。

現実に沖積土でも吹雪土でも火山灰土でも異なってきている。とかく火山灰土で違う。

土壌の細孔隙と液相気相との相互作用には、孔隙をつくる粘土鉱物や腐植の量や質の違いも関係するはずである。

3 計算

土壌の全重量をW gr。その容積をV ml 真比重をd。固相容積をVs ml 液相容積をVl ml とすると。容積 Vは

\[V = V_s + V_l \] (1)

である。液相容積Vl mlがVl grであるとすると、

\[W = d(V_s + V_l) \] (2)

がなりたつ。

dはWの乾燥重W' とすると

\[W - W' = V_l \]

\[V - V_l = V - (W - W') = V_s \]

\[: d = W' / (V - V_l) \] (3)

とかもとめられる。

すなわち dがわかっているとき、W Vの測定からVs VI がもとめられ。さらに他の物理量もとめる。

dについて、松本盆地の沖積土では1年間変わらなかっ。試料は約100点である。その変位係数は1.08％であった。また、この圏場には土層断面をつくり、その面の各層の極めて近い2点間のdのふれをもとめると変位係数が0.1％しかない。土壌のdは圏場の位置による変位係数1％の範囲でふれをもつことになる。この範囲で不均一ということになる。しかし固相容積、液相容積のそれは松本盆地沖積土では7％程度10％程度である。また松本盆地の西側の尾根状地形の一つ鳥川尾根状地形の洪積土でもほぼ同様である9)。いままでdはVsやVIより変位係数が小さいので、一定とみなして式(2)式からVs VI を算出してみた。しかし前述の沖積土や洪積土では、dとVsは相関はない。すなわちdとVsとは、圏場では、無関係に独立していることとなる。するとこの場合は、次のように意味がちがってくる。いま多数の試料を同一圏場からとったとき

\[W_1 = d_1(V_s + V_l) \]

\[W_2 = d_2(V_s + V_l) \] (4)

\[W_3 = d_3(V_s + V_l) \]

であったとしよう。W(1)を左辺に左辺、右辺は右辺で加え合わせ、Σをつけると

\[\Sigma W = 2d_1 V_s + 2d_1 V_l \]

\[\Sigma V = 2d_1 V_s + 2d_1 V_l \] (5)

ここでdとVsは独立に分布するので

\[\Sigma W = 2d \Sigma V_s + 2d \Sigma V_l \]

\[\Sigma V = 2d \Sigma V_s + 2d \Sigma V_l \] (6)

とdとVsを分離できる。(5)と(6)より

\[\Sigma V_s = (\Sigma W - \Sigma V) / (2d - 1) \]

\[\Sigma V_l = \Sigma V - \Sigma V_s \] (7)

\[\Sigma V_1 = \Sigma V_s + \Sigma V_l \] (8)

がりたつ。Vs VI dの平均値をVs VI dとおくと(7)(8)より

\[V = (W - V_l) / (d - 1) \]

\[V_l = V - V_s \]

\[V_1 = V_s + V_l \] (9)

となる。dは平均値をとった方がよいことになる。dは一応まで得られた値の全部を平均して使う方がよいことになる。

真比重の変位係数は非常に小さく、固相容積液相容積とそれは大きくなくなっている。これは土壌の生成作用の一環を暗示していると考える。真比重は非常に短い歴史の中で作りあげられたもので、いくつかの作用で変位が小さくなった。またそのために耕作など人為作用ではなかなか変わりにくいので変位が小さくなれる。一方固相容積が人為作用でいくつかの状態が作られるので、変位が大きくなる。すなわち変わりやすいと考えられる。

4 容積測定法にともなう誤差

測定にともなう誤差を検討しよう。

(i) 採土の際の誤差

まず第1に考えられるのは採土器の刃の口角の急さによる誤差である。採土器に採土器を使うが、これで試料を取るとき、その容積を決定するのは、刃の口角2γ cm と採土器内の採土管の長さa cm である。図1のB 内の土量の容積v cm3は

\[v = \gamma a \] (9)

いまγにa, aにaの有り誤差があると容積vの相対誤差は

\[\Delta v / v = \Delta a / a + 2 \Delta \gamma / \gamma \] (10)

aの変位係数は18サンプルで0.33％程度であった。刃の口角の方は採土器の口角に近くくりやく出てくる。刃の口角が1％くらいの誤差では2％くらいということになる。多数の試料平均ではΔa/aは急速に0に収束する。
実容積法について

しかし $\Delta r/r$ は偏りであって平均しても消えない。刃の口が変わりにくい材質の開発と、刃の手入れが必要である。

次に考えられるのは土壌を切りとり時の誤差である。

(2) 実容積測定時の誤差

まず考えられるのは、全重量を 0.1 gr まで、実容積を 0.1 ml までしか測定しないことによる誤差である。

この 0.1 以下の切りとりすべてによる誤差分散は確率論的で応じると 0.1 以下でして 0.1 は 0.2 の程度である。全重量を 126.0 gr 実容積を 65.0 ml 程度である。

したがって実容積の誤差の信頼限界は 0.023 %、0.044 %で他の誤差に対して問題にならない。

いま測定値が 65.0 ml でとかたき、これが真に測定の対象 65.0 ml であるかを疑ってかかる必要がある。

いまつきのような実験計画をたてると。同一層から 20 点の土壌を採土し全重量 W と実容積 V を測定する。つ
きに採土管のふたを開いて土壌を自然乾燥させる。その過程で毎日 W と V を測定する。

(1) 式と(2)式から

$W - V = (d - 1)Vs$

ので、d と Vs が変わらないかぎり W - V は変わらないはずです。この W - V の値につき、試料のちがい、水分によるちがいを 2 つの方針として二元分析をする。自然乾燥をさせて数日間、水温によるちがいは、有無ではない。したがってこの数日間の試料を使うと W - V のほうは、試料によるちがいが測定誤差の 2

この 2 つを分離できるように分散分析表を作ってみると松本池川園士では表 1 のようになる。

表 1 W - V の分散分析

<table>
<thead>
<tr>
<th>J</th>
<th>1105.7833</th>
<th>19</th>
<th>58.1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(J)</td>
<td>0.9065</td>
<td>60-19</td>
<td>0.02311</td>
</tr>
</tbody>
</table>

による W - V の誤差の σ は 1.61 程度である W は測定対象のそれによく対応するから 0.15 は V の測定値と測定対象のそれとの差がいかによく生ずるものと解釈できる。川砂を熱してその V を測定したときでもこの程度のふれはでる。川砂の場合は測定器と対象の相互作用は無視できると考えてよい。したがって土壌の場合は川砂の測定と同程度に正確に V の値がでるものと考えてよい。

(3) 固相容積、液相容積等算出時の誤差

真比重 d がわかっていると、全重量 W gr 実容積 V ml の測定から固相容積 Vs ml 液相容積 Vl ml は式(1)(2)から

$Vs = (W - V)/(d - 1)$

$VI = V - Vl$

として算出できる。4 (2) までのべたように WV の精密度は高くなる測定の変動係数で 0.02 %、0.1 % (あらかし値

以下) におさえることができる。しかし d の測定の位置による変動係数は 1 %程度ある。したがって 0.1 程式で Vs VI の精度をきめるのは d の変動係数である。

いま d の位置によるふれを Δd でそれによって引きおこされる Vs のふれを ΔVs とすると

$\Delta Vs/Vs = \Delta d/(d - 1)$

これは

$\sigma Vs/Vs = \Delta d/(d - 1)$

と書くこともできる。σVs は d のふれ σd によって引きおこされる誤差標準偏差である。同じ土壌で d = 0.62 $\sigma d = 0.026$ なので $\sigma Vs/Vs = 0.016$ 約 2 %の誤差変動が入ることとなる。一方この土壌の Vs の測定対象の変位係数は 7 %もある。そこで次の点をふまえておくことが必要である。
一つは圆桶の V_s や V_l の代表値（平均値）を出す場合である。このときは、同条件の試料を10点とか20点とかとり平均で出す。このふれその他の、$V_s V_l$ の測定対象のふれより次元が小さいので、平均の操作によって急速に0に集束してしまう。$V_s V_l$ 的測定対象のふれだけが問題となる。このふれのある土壌から代表値をある精度で得る手法には川尻7) のものがある。

次に個々の試料の測定値を問題とするときがある。このときはd のふれによるV_s の算出誤差は無視できない。V_s の値は下式のような変位係数（松本盆地沖積土では2%）をもつものとみなしてはならない。もちろんこの変位係数は大きいものではないが、より精度をあげたい場合には、各試料の乾土重W' を測定して

$$W - W' = V_l$$
$$V - V_l = V_s$$

(9)式から$V_s V_l$ を出す必要がある。

IV まとめ

実験値法そのものの誤差と測定対象のふれの主要点を明らかにした。

測定側の誤差では

(1) 採土器の刃の口径のくらいによって引き起こされる誤差。

(2) 測定対象の真比重がふれをもつために固相容積、液相容積を真比重を使って算出するときの誤差。

の2つが大きいことがわかった。しかし実用的にはほとんど問題とならないこともわかった。むしろ非常に精度の高い測定法である。

文献

1) 美濃織，土肥誌，29，67 (1958)
2) 美濃織，土肥誌，33，48 (1962)
3) 桂木力，nonsampling error，推計学の化学および生物学への応用，第3集，現場の推計学，南江堂 (1959)
4) 美濃織，土肥誌，29，97 (1958)
5) 美濃織，土肥誌，33，53 (1962)
6) 木内一己，美濃織，中村正治，土肥誌，35，172 (1964)
7) 川原美智子，土肥誌，37，401 (1966)