八郎潟千拓地における田畑輪換と土壌理化学性の変化

三浦昌司

Effect of paddy-upland rotation on the physical and chemical characteristics of soils of Hachirogata reclamation area

Shoji Miiura

Ohgata Branch, Akita Agricultural Experiment Station

1. はじめに

昭和41年に干拓された八郎潟千拓地では、昭和50年から1分当たり耕作面積15haで、水田8.6ha、畑6.4haの田畑輪替が行われている。畑作物では秋播小麦が75％と最も多く、ついて大豆の7％であるが、秋田県における秋播小麦の作戦は9月下旬から翌年7月下旬までであるので、八郎潟千拓地における栽培体系は、水田と秋播小麦、それに大豆を加えた田畑輪換である。

干拓直後の八郎潟千拓地土壌は、強グレイプライ粘質土壌が79.4％を占め、機械作業や作物生育に障害を与えているが、年数の経過とともにいわゆるヘドロ土壌の耕作化が進みつつある。ところが田畑輪換が導入されてからの土壌および作物生育の変化が大きいので、土壌調査と栽培試験によってこの点を明らかにしようとした。

2. 入植圃場における田畑輪換と土壌理化学性の変化

土壌の性質が比較的均一である。かつ干拓地の中で最も長く作物栽培が行われている第1次入植地の田畑輪換圃場を対象に、土壌断面調査、地耐力測定、土壌分析を行った。

1) 調査方法

(1) 調査圃場

調査圃場を図1に、調査圃場の概要を表1に示した。第1次入植地は干拓地全体の南部排水機場北側にあり、H11圃場がやや粗粒質であるほかは大部分細粒質土壌よりなる。調査は昭和53年4月の春耕前に行った。

なお調査5日間に降雨はなかった。

(2) 調査方法

深さ60cmまでの土壌断面調査と地耐力測定（SR-III型土壌抵抗測定器、断面積6cm²使用、1地点3点測定）、ならびに第4層までの土壌理化学分析を行った。

分析法の概要は次のとくである。

図1 第1次入植圃場調査地点図

1: 三相分布: 100ml 容量充填筒型器用。1層2点測定。
2: pH: 溶液はH₂O-pH、乾式はKCl-pHを測定。
3: 水溶性成分：1：10水浸出液について測定。
4: 易酸化物質分：土壌に6％H₂O₂を加え湯浴上で加熱分解後、BPPを指示薬とし、0.1N-NaOHで滴定（0.1N-NaOH 1ml=4.00 mgSO₄)する簡易測定法
5: 乾式効率、地中昇効率：乾式を蒸発状態とし、30℃で28時間インキュベート、生成したアソニア態窒素を乾式効率とした。また40℃で28時間インキュベートで生成するアソニア態窒素との差を地中昇効率とした。
6: 置換容量：シューレンバーグ法による測定。

なお測定値はいずれもそれぞれの調査区に含まれる調査圃場の平均値として示した。

2) 調査結果と考察

(1) 土壌断面調査

*秋田県農業試験場大岡支場

SPCPCG April 1983
全地点の土壌断面を図-1に示した。土壌が0YR〜7.5Yの土壌を酸化色土層、10Y〜2.5GYの土壌を還元色土層とすると、水田選作区の酸化色土壌の厚さは17cmであるが、畑輪換区1年区の28cm、同2年区36cmであって、畑輪換1年区を経過する毎に酸化色土壌は約10cmつつ厚くなっている。畑輪換3年区は他区に比較して特に酸化色土層が厚いが、これは前にも述べたようにこの調査区がやや粗粒質のH11層に原因があると考えられた。

畑を水田に還元した場合をみると、水田選作1年区では畑期間が短かったこともあって酸化色土壌は14cm、33cmと薄いが、畑期間が長い水田選作2年区では30〜50cmであって、以前の強グライ土壌に匹敵する場合もみられた。

また密度は水田選作区田帯では最大11であって、畑輪換により第1層、第2層では大となるが、水田選作区により小となる。粒度も畑輪換によって増加し水田選作で減少する場合が多かった。

（2）地耐力

大円圧入抵抗値を図-3に示した。

水田選作区は表層から下層まで2kg/cm²であるが、畑輪換区1年区では10〜15cmの部分が約4kg/cm²、畑輪換7年区では約4.5kg/cm²であって、畑輪換を続けることによってこの部分の貫入抵抗値が増大する。水田に還元した場合には、還元1年区では約15cmに4kg/cm²以上の層があるが、還元2年区ではこれが消失し、水田選作区とは差はなくなった。

（3）三相分布

三相分布を図-4に示した。

第1層の固相率は水田区はいずれも20%以下であるが、畑輪換1年区では20%、同2年区は25%であった。畑輪換3年区、同7年区では第2層の固相率が大きいが、第3層、第4層は各区とも差がない。気相は表層で大きく畑輪換によって増大するが、畑期間の長かった水田選作2年区では水田に還元しても表層の気相は大きかった。

（4）化学性

化学性を表-1、表-3に示した。

pHは畑輪換3年区をのぞき、ほぼ中性である。水溶性塩素、易酸化性硫酸は下層ほど多く、畑輪換期間の長くなるにつれて減少する傾向がみられる。全塩素、全窒素は畑輪換3年区をのぞき、水田区で高く畑輪換区で低い傾向がある。乾燥渦効果は水田区で大きい傾向があるが、地温上昇効果は明らかでない。

塩基置換容量は畑輪換によって第1層で減少する傾向があるが、第2層では不明である。置換性塩基ではカルシウムは表層に多く下層に少ないが、その他の塩基は下層ほど多い傾向がみられる。塩基飽和度は畑輪換3年区の水田選作2年区の第1層、第2層が低いか、いずれも90%以上である。

水溶性塩基では、カルシウムは水田選作区や畑輪換1年区、水田選作1年区、同2年区など、水稲栽培の影響が強く残っている調査区では2年層層が最も多く、畑輪換2年区、同3年区、第7年区では第3層が多い。また同一調査区でみれば、カルシウム以外の水溶性塩基は下層ほど多い傾向がみられる。

このように八郎潟干拓地調査区の土壌断面は水田選作の場合は作土層下から還元色土壌が出現する強グライ土壌であるが、畑輪換によって酸化色土壌が厚くなり、土壌型がグライ土壌となる。そして水田に還元すると畑期間の短い場合には容易に以前の強グライ土壌に戻る。畑輪換による固相率の増大が第2層まで進んだ場合は、これが地耐力の増大、あるいは構造、亀裂の生成を促し、透水性の向上に役立つものと思われる。

八郎潟干拓地環境に関しては易分解性有機物が多く含まれているが、畑輪換による全塩素、全窒素の減少は土壌有機物の変化を伴っていると考えられる。干溝初期の八郎潟干拓地土壌の土壌粘性は次第に改善されつつある。

SPCG April 1983
水稲適作区

(1) H8-5
0 10YR%HC
13 5Y%LiC
23 10Y%HC
43 7.5Y%LiC

(2) H10-10
0 10YR%HC
13 7.5Y%LiC
25 10Y%HC
40 10Y%HC

(3) H15-11
0 10YR%HC
15 5Y%LiC
32 10Y%HC
50 7.5Y%LiC

(4) H11-3
0 10YR%LiC
15 10YR%LiC
25 2.5Y%LiC
40 7.5Y%LiC

(5) H11-7
0 10YR%LiC
13 7.5Y%LiC
27 7.5Y%LiC
48 7.5Y%LiC

(6) H8-11
0 2.5Y%HC
9 2.5Y%HC
33 10Y%HC
50

(7) H18-8
0 2.5Y%HC
9 2.5Y%HC
33 10Y%HC
50

(8) H18-3
0 10YR%HC
13 10Y%HC
27 10Y%HC

(9) H18-5
0 5Y%HC
15 5Y%HC
45 10Y%HC

凡例
○ち密度　△合数　×管状斑紋　■管理班紋　一グライ層

図2 八郎瀬干拓地第1次入植圃場の土壌断面柱状図

が、土壌中には湖底土時代に蓄積した有機物や塩類がなお量に含まれており、これが作物生育の不安定要因となっている。したがって田畑換換によって土壌の乾燥を進めることは、有機物の分解を促進し、下層の透水性を向上させて塩類の溶出を促進するなど、不安定要因を除去する効果があると考えられる。

3. 田畑換換と水稲生産力の変化

八郎瀬干拓地土壌の理化学性は田畑換換により大きく変化する。そこでこれが水稲生育や窒素的性力に及ぼす影響を明らかにする目的で、昭和55年～57年に水稲適作圃場と畑作物跡水田選元圃場で水稲に対する窒素施用試験を行った。

1) 試験方法

(1) 試験圃場

① 連作水田：八郎瀬干拓地 A9-III-2N 園場。昭和41年～52年畑状態放任。昭和53年以降水稲栽培。

② 秋播小麦跡水田：A9-III-1S 園場。同上。昭和52～

SPCPG April 1983
54年秋播小麦。昭和55年以降水稲栽培。
③ 大豆跡水田：A9-III-11N 雑種。同上。昭和53-55年大豆栽培。昭和56年以降水稲栽培。
(2) 試験区の構成
試験区を図-4 に示した。基肥需求量標準量は 4 kg/10 a であるが、昭和56年の大豆跡 1 年目水田では過剰に 施用がおそれから、追肥施用区のみ基肥需求を 2 分の 1 の 2 kg/10a とした。追肥の時期は両年次とも、活葉期追肥：移植後 7 日目、幼穂形成期 追肥：出穂25日前、減数分裂期追肥：出穂10日前とした。
(3) 測定項目
水稲の生育・収量調査のほか、各圃場の無肥料区と基肥区の土壌アンモニヤ態窒素、追作水田と大豆跡水田の 下部 5 cm 地温を測定した。

SPCG April 1983
表2 田畑輪換と土壌の化学性（1）

<table>
<thead>
<tr>
<th>項目</th>
<th>水稲作区</th>
<th>連作区</th>
<th>畑転換1年区</th>
<th>畑転換2年区</th>
<th>畑転換3年区</th>
<th>畑転換7年区</th>
<th>水田還元1年区</th>
<th>水田還元2年区</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>H2O</td>
<td>7.48</td>
<td>7.66</td>
<td>7.56</td>
<td>7.55</td>
<td>7.62</td>
<td>7.43</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>KCl</td>
<td>6.98</td>
<td>6.98</td>
<td>7.55</td>
<td>7.25</td>
<td>7.20</td>
<td>7.60</td>
<td>6.70</td>
</tr>
<tr>
<td>T-C</td>
<td>%</td>
<td>2.99</td>
<td>0.29</td>
<td>2.57</td>
<td>0.21</td>
<td>2.46</td>
<td>0.22</td>
<td>2.48</td>
</tr>
<tr>
<td>T-N</td>
<td>%</td>
<td>18.5</td>
<td>0.03</td>
<td>16.6</td>
<td>0.04</td>
<td>12.0</td>
<td>0.06</td>
<td>7.7</td>
</tr>
<tr>
<td>有機態Cl</td>
<td>mg/100g</td>
<td>33.0</td>
<td>0.13</td>
<td>119.6</td>
<td>0.45</td>
<td>87.0</td>
<td>0.49</td>
<td>73.0</td>
</tr>
<tr>
<td>有機態硫黄</td>
<td>%</td>
<td>13.8</td>
<td>0.64</td>
<td>9.1</td>
<td>0.69</td>
<td>8.4</td>
<td>0.57</td>
<td>14.6</td>
</tr>
<tr>
<td>有機態硫酸</td>
<td>mg/100g</td>
<td>14.4</td>
<td>4.1</td>
<td>5.8</td>
<td>1.4</td>
<td>9.0</td>
<td>4.5</td>
<td>11.8</td>
</tr>
<tr>
<td>乾土効果</td>
<td>mg/100g</td>
<td>600 kg/10 a</td>
<td>100 kg/10 a</td>
<td>88.8</td>
<td>0.53</td>
<td>187.3</td>
<td>0.66</td>
<td>182.0</td>
</tr>
<tr>
<td>地温上昇効果</td>
<td>mg/100g</td>
<td>500 kg/10 a</td>
<td>100 kg/10 a</td>
<td>88.8</td>
<td>0.53</td>
<td>187.3</td>
<td>0.66</td>
<td>182.0</td>
</tr>
</tbody>
</table>

2) 試験結果と考察

(1) 水稲の生育・収量（表2-5）

昭和56年の水稲の生育は、有機質含有量が高く、追肥を行った場合でも、水稲の生育が良好である。収量は500 kg/10a 以下であった。これに対し昭和56年の大豆の収量は600 kg/10a をこえた。

昭和55年の水稲の収量を施販法との関連でみると、連作水田では追肥の効果が著しく大きい。昭和56年の大豆の収量は、水稲の収量よりも小さかったが、追肥2回目の収量は低かった。収量レベルの高かった大豆の年次水田での追肥効果は大きく、追肥3回目は基肥区に比較し7%の増収にすぎなかった。これは追肥により個数が増加したものので、実用個数が60%の増加が観察されたためである。

昭和35年の水稲の生育は、有機質含有量が高かった。連作水田は500 kg/10a 以上追肥を行った結果、連作水田の大豆の収量は500 kg/10a をこえた。連作水田での追肥効果は水稲の収量を優先的に増加させた。連作水田と昭和56年の大豆の収量は600 kg/10a を基肥区に比較し7%の増収を示したが、連作水田での基肥区の収量は700 kg/10a をこえ、また連作水田の収量は水稲の収量が5%の増収となった。

このように両年とも秋播小麥水稻の収量は無肥料区
<table>
<thead>
<tr>
<th>調査区</th>
<th>層位</th>
<th>塩基置換容量me/100g</th>
<th>置換性塩基me/100g</th>
<th>塩基容和度</th>
<th>水溶性塩基mg/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CaO</td>
<td>MgO</td>
<td>K2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>水稲</td>
<td>1</td>
<td>48.5</td>
<td>35.3</td>
<td>10.1</td>
<td>1.4</td>
</tr>
<tr>
<td>連作</td>
<td>2</td>
<td>45.0</td>
<td>32.2</td>
<td>16.3</td>
<td>1.7</td>
</tr>
<tr>
<td>区</td>
<td>3</td>
<td>48.1</td>
<td>20.8</td>
<td>24.1</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>48.9</td>
<td>16.1</td>
<td>25.5</td>
<td>2.3</td>
</tr>
<tr>
<td>畑転換</td>
<td>1</td>
<td>42.1</td>
<td>30.6</td>
<td>9.7</td>
<td>1.1</td>
</tr>
<tr>
<td>1年区</td>
<td>2</td>
<td>43.2</td>
<td>19.0</td>
<td>19.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.1</td>
<td>18.8</td>
<td>24.6</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>45.6</td>
<td>19.4</td>
<td>28.8</td>
<td>2.3</td>
</tr>
<tr>
<td>畑転換</td>
<td>1</td>
<td>39.7</td>
<td>31.8</td>
<td>8.5</td>
<td>1.3</td>
</tr>
<tr>
<td>2年区</td>
<td>2</td>
<td>40.9</td>
<td>27.0</td>
<td>12.1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.0</td>
<td>26.1</td>
<td>19.9</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>41.6</td>
<td>14.9</td>
<td>23.1</td>
<td>2.2</td>
</tr>
<tr>
<td>畑転換</td>
<td>1</td>
<td>41.5</td>
<td>23.2</td>
<td>10.0</td>
<td>1.1</td>
</tr>
<tr>
<td>3年区</td>
<td>2</td>
<td>43.8</td>
<td>15.1</td>
<td>9.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>44.6</td>
<td>8.6</td>
<td>10.8</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.8</td>
<td>12.1</td>
<td>19.6</td>
<td>1.8</td>
</tr>
<tr>
<td>畑転換</td>
<td>1</td>
<td>38.6</td>
<td>29.9</td>
<td>6.6</td>
<td>1.4</td>
</tr>
<tr>
<td>7年区</td>
<td>2</td>
<td>45.2</td>
<td>32.4</td>
<td>7.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.3</td>
<td>28.5</td>
<td>16.3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>49.3</td>
<td>18.9</td>
<td>26.1</td>
<td>2.0</td>
</tr>
<tr>
<td>水田還元</td>
<td>1</td>
<td>40.2</td>
<td>30.3</td>
<td>9.9</td>
<td>1.2</td>
</tr>
<tr>
<td>1年区</td>
<td>2</td>
<td>40.1</td>
<td>25.8</td>
<td>18.9</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>44.5</td>
<td>16.8</td>
<td>25.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>47.1</td>
<td>14.2</td>
<td>24.2</td>
<td>2.0</td>
</tr>
<tr>
<td>水田還元</td>
<td>1</td>
<td>43.2</td>
<td>26.7</td>
<td>4.7</td>
<td>0.6</td>
</tr>
<tr>
<td>2年区</td>
<td>2</td>
<td>44.6</td>
<td>19.2</td>
<td>12.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.5</td>
<td>19.5</td>
<td>25.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>44.8</td>
<td>17.6</td>
<td>27.3</td>
<td>3.6</td>
</tr>
</tbody>
</table>

では連作水田にまきるもの、窒素を施用した場合の取量差は小さい。大豆跡水田は同年次、各試験区とも他区に比較して100kg程度高収量が高く、また追肥効果も大きく現れることも知られている。

(2) 土壌アンモニア態窒素の推移
連作水田と大豆跡水田の無肥料区と基肥区の土壌アンモニア態窒素の推移は図一5に示した。連作水田無肥料区は同年とも移植後は約1.5mg(乾物100g当たり)で推移するが、その後増加して6月中旬から下旬にかけて約3mgとなり、7月中旬には約1mgまで低下した。連作水田基肥区は同無肥料区より約2mg高く推移していた。
秋播小麦跡水田は連作水田に比較して同年とも6月上旬の土壌アンモニア態窒素に差はないが、その後の低下は速かで、また無肥料区と基肥区との差は小さい傾向があった。
大豆跡水田では昭和56年は無肥料区でも初期より土壌アンモニア態窒素が多く、7月中旬でも4mgと低下はみられない。さらに基肥区は無肥料区より1〜4mg多く推移していた。しかし昭和57年には無肥料区の土壌アンモニア態窒素は少なく、基肥区も連作水田との差は小さかった。
このように連作水田跡水田の土壌アンモニア態窒素は豆科1年目水田では連作水田よりも多いが、大豆跡2年目水田や秋播小麥跡水田では差がなかった。このことから大豆跡1年目水田での増収には土壌アンモニア態窒素の

SPCPG April 1983
表-4 空素施用試験設計

<table>
<thead>
<tr>
<th>試験区</th>
<th>空素施用量 kg/10a</th>
<th>基肥</th>
<th>追肥</th>
<th>空素</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>活着期</td>
<td>幼期</td>
<td>退分期</td>
<td></td>
</tr>
<tr>
<td>連作水田</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>無肥料区</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>基肥区</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>追肥2回区</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>追肥3回区</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>秋播小麦跡水田</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>無肥料区</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>基肥区</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>追肥2回区</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>追肥3回区</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>大豆跡水田</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>無肥料区</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>基肥区</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>追肥2回区</td>
<td>2(4)*</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>6(8)*</td>
</tr>
<tr>
<td>追肥3回区</td>
<td>2(4)*</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8(10)</td>
</tr>
</tbody>
</table>

*大豆跡水田：追肥区の基肥は、昭和56年2kg/10a、昭和57年4kg/10aとした。

表-5 生育と収量

<table>
<thead>
<tr>
<th>試験区</th>
<th>調査項目</th>
<th>稲長 cm</th>
<th>稲本/m²</th>
<th>稻米重 kg/10a</th>
<th>総粒数 10⁵/m²</th>
<th>登熟歩合 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>連作水田</td>
<td>無肥料区</td>
<td>64.0</td>
<td>272</td>
<td>292</td>
<td>17.0</td>
<td>86.6</td>
</tr>
<tr>
<td></td>
<td>基肥区</td>
<td>71.0</td>
<td>308</td>
<td>345</td>
<td>18.5</td>
<td>91.3</td>
</tr>
<tr>
<td></td>
<td>追肥2回区</td>
<td>77.6</td>
<td>380</td>
<td>447</td>
<td>28.6</td>
<td>85.8</td>
</tr>
<tr>
<td></td>
<td>追肥3回区</td>
<td>80.3</td>
<td>369</td>
<td>468</td>
<td>25.0</td>
<td>89.9</td>
</tr>
<tr>
<td>秋播小麦跡2年目水田</td>
<td>無肥料区</td>
<td>73.9</td>
<td>286</td>
<td>355</td>
<td>21.1</td>
<td>86.6</td>
</tr>
<tr>
<td></td>
<td>基肥区</td>
<td>75.4</td>
<td>314</td>
<td>414</td>
<td>23.9</td>
<td>90.9</td>
</tr>
<tr>
<td></td>
<td>追肥2回区</td>
<td>72.8</td>
<td>341</td>
<td>409</td>
<td>22.6</td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td>追肥3回区</td>
<td>80.1</td>
<td>370</td>
<td>480</td>
<td>30.0</td>
<td>88.6</td>
</tr>
<tr>
<td>大豆跡1年目水田</td>
<td>無肥料区</td>
<td>89.1</td>
<td>352</td>
<td>446</td>
<td>27.0</td>
<td>80.7</td>
</tr>
<tr>
<td></td>
<td>基肥区</td>
<td>92.1</td>
<td>394</td>
<td>590</td>
<td>37.4</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td>追肥2回区</td>
<td>89.4</td>
<td>409</td>
<td>587</td>
<td>36.9</td>
<td>79.7</td>
</tr>
<tr>
<td></td>
<td>追肥3回区</td>
<td>88.6</td>
<td>445</td>
<td>634</td>
<td>45.3</td>
<td>63.0</td>
</tr>
<tr>
<td>連作水田</td>
<td>無肥料区</td>
<td>65.5</td>
<td>278</td>
<td>401</td>
<td>16.1</td>
<td>95.9</td>
</tr>
<tr>
<td></td>
<td>基肥区</td>
<td>71.8</td>
<td>354</td>
<td>494</td>
<td>21.1</td>
<td>95.3</td>
</tr>
<tr>
<td></td>
<td>追肥2回区</td>
<td>85.4</td>
<td>572</td>
<td>599</td>
<td>36.1</td>
<td>86.2</td>
</tr>
<tr>
<td></td>
<td>追肥3回区</td>
<td>83.4</td>
<td>500</td>
<td>606</td>
<td>32.9</td>
<td>88.6</td>
</tr>
<tr>
<td>秋播小麦跡3年目水田</td>
<td>無肥料区</td>
<td>70.8</td>
<td>326</td>
<td>440</td>
<td>20.9</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>基肥区</td>
<td>73.4</td>
<td>356</td>
<td>516</td>
<td>24.9</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>追肥2回区</td>
<td>85.1</td>
<td>444</td>
<td>606</td>
<td>29.3</td>
<td>87.9</td>
</tr>
<tr>
<td></td>
<td>追肥3回区</td>
<td>80.9</td>
<td>393</td>
<td>615</td>
<td>29.9</td>
<td>91.8</td>
</tr>
<tr>
<td>大豆跡2年目水田</td>
<td>無肥料区</td>
<td>75.9</td>
<td>407</td>
<td>552</td>
<td>26.0</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>基肥区</td>
<td>82.5</td>
<td>446</td>
<td>613</td>
<td>32.1</td>
<td>88.5</td>
</tr>
<tr>
<td></td>
<td>追肥2回区</td>
<td>86.5</td>
<td>443</td>
<td>706</td>
<td>37.2</td>
<td>83.4</td>
</tr>
<tr>
<td></td>
<td>追肥3回区</td>
<td>82.1</td>
<td>446</td>
<td>740</td>
<td>34.3</td>
<td>88.2</td>
</tr>
</tbody>
</table>

SPCPG April 1983
増加が関与していると考えられた。

(3) 地温の推移

図-6 は連作水田と大豆跡水田について測定した地下5 cm の地温（最高と最低の平均）の推移である。昭和56年の大豆跡1年目水田は連作水田に比較して、5月下旬では平均 3.3℃、6月上旬では平均 1.7℃ 高く、6月中旬以降差は小さい。昭和57年の大豆跡2年目水田は5月下旬 1.4℃、6月上旬から8月 3℃、いずれも連作水田より高く推移している。

このように大豆跡水田の地温が高いのは、畑作換が向上し、湿度の高い田面水が下層に移動するためであり、土壌アンモニア態窒素が増加するのも、畑間の乾燥と地温上昇によって土壌窒素の無機化が促進されるためと考えられる。山形県における大豆、ばれいしょを用いた田畑換換で、土壌の腐植化度が向上し、土壌の窒素供給量が増大することを認め、秋田県農試の畑作物水稲栽培試験では水稲の出来過ぎ防止に留意する必要があるとしている。

八郎潟干拓地は干拓されてから約20年を経過したが、下層は依然として干拓直後の性質を有している。これは改善には畑作換換が効果があることがこれまで述べてきたが、実際の耕地ではそれぞれの圃場条件に適応した水稲栽培の栽培方法に不明の点が多く、今後はこの点の検討が必要となっている。

4. 摘要

八郎潟干拓地で現在行われている田畑換換が、土壌の理化学性や水稲生産力に及ぼす影響について検討した。

1) 第1次入植圃場の調査では、水稲連作圃場は強グライ土壌であるが畑作換を行うことによりグライ土壌に変化した。また畑作換により表層の間接率が増大し、地耐力が向上した。

2) 土壌理化学性では畑作換によって水凝性窒素、易酸化性二酸化窒素が減少した。乾土効果は水田区で大ぶりか
た。水稲性カルシウムは水稲栽培の影響の強い圃場では
第2層で多く、畑作年数の長い圃場では第3層で多か
った。
3) 水稲に対する窒素施用試験では大豆跡米田の収量
が高かった。これは透水性向上による地温の上昇と、土
壤アンモニア態窒素消資量の増加によると思われた。
以上から八郎潟干拓地における田畑輪換は、水稲作
では進みにくい低湿重粘土の理化学性改善を促進し、ま
た水稲生産性を向上させる効果のあることが知られた。

引用文献
1) 秋田県農業試験場：秋田県農業試験場70年史 (1967)
2) 秋田県農業試験場：八郎潟中央干拓地土壌調明書　(第1期調査) (1970)
3) 秋田県農業試験場：八郎潟中央干拓地第2期土壌調査成績書 (1977)
4) 上郷千春：田畑韓換における土壌の変化と施肥法、
農業および園芸、36 (1961)
5) 金子淳一：八郎潟干拓地へドロにおける機械化適応
性的向上と耕地化過程に関する研究、秋田県農業研究
報告、22 (1977)
6) 三浦昌司・三浦日出夫・村井隆：八郎潟干拓地土
壤の微生物活性と粘土鉱物について、秋田県農業研究
報告、23 (1980)
7) 村上英行：酸性硫酸塩土壌の特性と改良に関する研
究 (1965) 　(1983.5.7 受理)

Summary
Soils of fields of the Hachihogata reclamation area are mostly clayey and contain large amounts of
salts. The consistency is so hard that plant growth and farm operations cannot be readily performed.
Research was carried out to determine whether paddy-upland rotation management could improve the
situation.

Based on soil surveys conducted in the area where cultivate was first initiated, it was shown that
the thickness of the oxidized soil layer increased by 10 cm each year under upland conditions. It is
estimated that adequate field conditions could be obtained after a minimum of three years of cultivation
under upland conditions.

The yield of rice cultivated after wheat or soybeans often increased. The soil temperature after
cultivation of soybeans in paddy fields was higher than when rice was continuously cultivated, and
the level of soil inorganic nitrogen increased in such fields.

It is considered that the productivity of soils from the Hachihogata reclamation area could be enhanced
by paddy-upland rotation management.