地下水中の物質移動

藤織 克之*

Mass Transport in Groundwater
Katsuuyuki FUJINAWA
The National Research Institute of Agricultural Engineering

I はじめに

地下水中における物質移動の研究は土壤物理学、土壌化学、水文地質学、水理学などの境界領域に属し、その対象物質には塩分、栄養塩類、重金属、合成有機化合物、病原微生物、放射性物質など、研究目的によって異なる様々な物質が含まれる。

これらは飽和・不飽和帯を含む土壌-地下水系において種々の物理的、化学的作用や生物的作用を受ける。従って飽和-不飽和帯における物質の挙動は極めて複雑なものとなり、完全定量化ができない現象も少なくない。そこで以下の研究において、扱う境界を地下水系に限定し、定量化が可能な物理的、化学的現象の一部について考察する。そして最後に野外における実験データをもとに、今後の問題点の所在を探る。

II 地下水中における物質移動の基礎理論

地下水中における物質の移動に及ぼす最大の影響を与えるのに地下水の流れがある。この流れを大体分けるとポテンシャル差による強制対流（流体とも呼ばれる）と濃度や温度などの不均一分布による乱拡散によって生じる自然対流がある。この地下水の流れはダルシーの法則によって与えられると考えられる運動方程式

\[q = -n (P + \rho g Z) \] (1)

と、地層および流体を圧縮性と考えることにより得られる流体の連続式

\[\nabla \cdot q = 0 \] (2)

によって記述できる。ここで \(q \) [LT^{-1}], \(n \) [L], \(P \) [ML^{-2}T^{-3}], \(\rho \) [ML^{-3}], \(g \) [LT^{-2}], \(Z \) [L] はそれぞれ、みかけの地水速ベクトル、真流速ベクトル、間隔率、密度、重力、体積の密度、重力加速速度、圧縮係数を表す。

一方、地下水中におけるミクログ水の流れを観察すると、隙間中の水分子の流動速度および流動方向は微細な土粒子間隙の形状によって大きな制限を受け、流線は平均流動方向に対して空間的に変動する。このようなミクログ水の流れによって生成する溶質の拡散は機構的拡散と呼ばれる。また地下水が流動していない場合でも溶質の濃度移動によって溶質の拡散が起こる。このような拡散は分子拡散と呼ばれ、一般に機構的拡散に比べて小さいため、無視できる場合が多い。今物質の質量濃度を \(C \) [ML^{-3}] とすると、質量保存の法則により

\[\nabla \cdot (D \nabla C) = -\rho g Z \nabla C \] (3)

が得られる。ここで \(D \) [LT^{-2}] は分子拡散係数とトータリを乗り受けたものに機構的拡散係数を加えたものである。この式において吸着や沈殿などの化学反応にあずかった量である。

さて地下水中で土粒子に吸着されたり、あるいは沈殿などにより物質が変化する物質は非保存系物質と呼ばれ、化学反応を記述する反応式として各種の吸着等温式が提案されている。このうち最も代表的な吸着等温式は次の式で表わされる線形吸着式

\[s = K_s C \] (4)

と、線形・非線形吸着式

\[\frac{\partial s}{\partial t} = K_s (C - M) \] (5)

である。ここに \(s \) [1] は乾燥多孔質体単位重量当りの吸着量あるいは吸着量、また \(K_s \) [ML^{-1}T^{-1}], \(M \) [ML^{-3}] は吸着定数である。なお地下水系において溶質が単位時間に吸着あるいは離脱する量 \(R/n \) は(4)式より

\[\frac{R}{n} = \frac{\partial s}{\partial t} = \rho_n \frac{\partial s}{\partial t} = k_s \frac{\partial C}{\partial t} \] (6)

あるいは(5)式より

\[\frac{R}{n} = \frac{\partial s}{\partial t} = \rho_n \frac{\partial s}{\partial t} = k_s (C - mS) \] (7)

で表わされる。ここに \(S \) は吸着量を液相の濃度と同一の

*農業土壤試験場

SPCG April 1984
単位で表わしたもの。また \(\rho_1 \) [ML^{-3}] は多孔質体の仮比重である。また \(K_1 = K_0 / n, \ n_1 = K_0 / n, \ m = nM / \rho_1 \)である。実際の化学反応は帯水層を構成する粘性土粒子などの細晶構造と化学組成、溶液の PH、温度、あるいは共存イオンの有無などの複雑な要因によって影響されるため、厳密な定式化は困難であるが、一般に式(4)式(6)式に準ずる形の吸着等温式が解析に用いられる。また Cameron 等は化学物質によっては土層構成物質の一部、例えば有機物とは非常に早くなるが、粘性土粒子など他の構成物質とはよく反応することに着目し、(4)式と(5)式を結合した平衡・非平衡吸着式

\[
\frac{\partial C}{\partial t} = K_1 \frac{\partial S}{\partial t} + K_2 (C - M_s) \quad \ldots\ldots(8)
\]

が重金銅、有機物、殺虫剤などの吸着に大きく関与するときを示している。なお(4)式は平衡式で、化学反応が瞬間に変わるときを意味しており、\(t = (1 + k_t) T \) とおいてと \(C(x, T) \) は解析的に化学反応がない場合と同様に取り扱える。すなわち物質移動の速度は吸着がない場合の 1/(1 + k_t) に減衰する。このため (1 + k_t) が減衰係数と呼ばれている。そこで以下において、流速と分散からなる物理的応作用と、主として(4)式で表わされる化学的応作用を受ける地下水の物質移動について考察することにする。

さて地下水流れが一様な一次元等と土層中において

\[
C(x, 0) = 0, \quad x \geq 0
\]

\[
S(x, 0) = 0, \quad x \geq 0
\]

なる初期条件、および

\[
C(x, t) = C_0, \quad t > 0
\]

\[
lim C(x, t) = 0, \quad t \rightarrow \infty
\]

なる境界条件をもとに、(7)式で与えられる非平衡吸着反応を含む基礎方程式(3)を解くと、解は次の式で与えられる。

\[
C(x, t) = \frac{2}{\sqrt{\pi}} \int_{t_0}^{t} e^{-\frac{t-t_0}{2}} \exp \left(-\frac{x^2}{4D_0 t} \right) J \left(\frac{k_t x}{4D_0 t}, \frac{k_m (t - \frac{x^2}{4D_0 t})}{4D_0 t} \right) dt
\]

\[
S(x, t) = k_t \int_{t_0}^{t} C(x, \tau) \exp \left\{ -k_m (t - \tau) \right\} d\tau
\]

ここに、

\[
J(y, \tau) = 1 - e^{-\sqrt{y^2}} e^{-\frac{1}{2} \left(\frac{y}{\sqrt{2}} \right)^2} \frac{d}{d\tau}
\]

で \(J \) 関数と呼ばれ、Goldstein は \(J \) 関数の基本的性質を明らかにしている。なお式(3)の \(J \) は第 1 種変形ベッセル関数である。しかし解析解(9)式を直接解することは困難なので、ここでは条件つきで(9)式を展開することにより、それぞれのパラメータが地下水の中の物質移動に与える影響を調べる。また最後に濃度分布に起因する密度差によって自然対流が発生する場合の物質移動について考察する。

III 解析例

1. 移流のみによる物質移動

物質が平均地下水流れによって移動する場合で、通常ビストン・フローと呼ばれている。この場合、化学反応は伴わないから(7)式の \(k_t \) はゼロであり、また(3)式の分散係数 \(D \) もゼロである。従って一次元土層中の溶液中の濃度は

\[
\frac{C}{C_0} = H \left(\frac{t - x}{v} \right)
\]

で表され、また吸着量 \(S \) はゼロとなる。ここに \(H \) はヘリスクのステップ関数である。図-1 は物質移動が移流のみに影響される場合の土層溶液中の相対濃度分布を示したものである。

2. 流速と分散による物質移動

この例では物質移動に、さらに分散効果が加わったもので、化学反応を伴わない保存系物質の移動に相当する。(9)式に \(k_t = 0 \) 代入し、積分形を展開すると

\[
\frac{C}{C_0} = \frac{1}{2} \left\{ \text{erfc} \left(\frac{x - x_0}{2\sqrt{D}t} \right) + \text{erfc} \left(\frac{x + x_0}{2\sqrt{D}t} \right) \right\}
\]

が得られる。式(9)は Ogata 等が導いた式のものである。ここに \(\text{erfc} \) は補誤差関数である。分散係数 \(D \) が地下水中の物質移動に関与する影響を図示したもののが図-1 で、溶液は分散により希釈される一方、溶液の一部は平均地下水流れより早く移動する。なお分散係数が大きくなると、土層中の濃度分布は図-1 のステップ関数に近似することがわかる。

一方、二次元の平面上で地下水が x 軸に平行に流速 \(v \) で流れている場合、(3)式は

\[
\frac{\partial C}{\partial x} \left(D_{xx} \frac{\partial C}{\partial x} \right) + \frac{\partial C}{\partial y} \left(D_{xy} \frac{\partial C}{\partial y} \right) = \frac{\partial C}{\partial t} + \frac{\partial C}{\partial t}
\]

となる。ここに \(D_{xx}, D_{xy} \) は水平分散係数、横分散係数で、\(D_{xx} \) は \(D_{xy} \) より小さいことが知られている。今間

SPCPG April 1984

![図-1 移流のみによる物質移動](image)
図-2 分散物質移動に及ぼす影響

図-3 移流及び分散による二次元多孔質土体中の物質移動

隙率ηの含水層へ、質量Nのトレーサーを瞬間に注入すると(4)式の解は次式で与えられる。

\[C = \frac{N}{4\pi nt} (D_L D_T)^{1/2} \exp \left\{ -\frac{(x-u t)^2}{4D_T t} - \frac{y^2}{4D_T t} \right\} \]

なお(1)式はトレーサー注入点を座標原点として導いたものである。(2)式よりわかるように、t=L/υにおける等濃度曲線は (x, y) = (uL, 0) を中心とする円で表わされる。(3)式は、トレーサーは水中の下層分より土層へ流入し、横拡散により流れに直交する方向に乱れる。これを図示したもののが図-3で、用いたパラメータは、\(v = 1.0 \text{cm/min} \)，横拡散係数 \(D_L = 0.5 \text{cm}^2/\text{min} \)，横拡散係数 \(D_T = 0.1 \text{cm}^2/\text{min} \)，経過時間は60分である。なお図中の数字は特性曲線法と有限要素法を組み合わせた数値解法により(4)式を数値的に解いたもので、各節点毎に表示したものである。(4)式を用いて、Nが80000、Lが200cm、 τが1/2である場合の等濃度曲線を図示したものである。

3. 移流と非平衡・線形吸着による物質移動

(6)式と(7)式の連立連立方程式において(6)式の分散項が無視できる場合、解は

\[\frac{C}{C_0} = f(\chi, m(\tau - \chi)) \cdot H(\tau - \chi) \]

および

\[S = \int f(\chi, m(\lambda - \chi)) \cdot e^{-x(\lambda - \chi)} H(\lambda - \chi) d\lambda \]

で与えられる。(5)式と(7)式の関係を示す。ここで、\(\chi = k_{a} \times \psi / \nu \) は水元流形、\(\tau = k_{a} \) は水元流形である。吸着等温式(7)において、\(m \)がゼロの場合、吸着反応は不可逆となり液相と間相の一方通行となる。このような場合において、\(m = 0 \) とおくと

\[\frac{C}{C_0} = \exp (-\chi) \cdot H(\tau - \chi) \]

SPCG April 1984
4. 移流、分散及び非平衡・非可逆・流形吸着による物質移動

この例は研究解(9)、(10)において \(m = 0 \) においたものに相当する。従って無次元数 \(\delta (= D \theta / u) \) および無次元距離 \(x \), 無次元時間 \(\tau \) を用いると(9)は

\[
\frac{C}{C_0} = \frac{1}{2} \left[\exp \left\{ \frac{1}{2\delta} \right\} \text{erfc} \left\{ \frac{x - \tau \sqrt{1+4\delta}}{2\delta} \right\} + \exp \left\{ \frac{1}{2\delta} \right\} \text{erfc} \left\{ \frac{x + \tau \sqrt{1+4\delta}}{2\delta} \right\} \right]
\]

となる。同様に(10)式は

\[
S = \int_0^\tau C(x, \tau) \, d\lambda
\]

となる。\(C/C_0 \) および \(S/C_0 \) を \(\tau = 3.0 \) において、\(\delta = 0.01 \sim 100.0 \) の範囲で \(x \) に対して図示したもののが図-7である。図-7で\(\delta \) が小さくなると、すなわち分散係数が小さくなると \(C/C_0 \) および \(S/C_0 \) は図-5に漸近するのがわかる。

5. 自然対流による物質移動

地下水沿に濃度差や温度差があり、その差がある一定の値を越えるとポテンシャル差がない場合でも密度対流と呼ばれる水の流れが生じ物質は駆動される。たとえば塩水層において塩水層内の温度差に起因する密度流のよい例である。また塩水層下部に結晶の存在的ある地域では温度差に起因する熱対流が発生すると(14)(15)。なお密度差に起因する自然対流においては、水と石油のように2つの流体が非混合性の場合 \(D = 0 \) と、水と塩水のよう Hou混合性の場合 \(D \neq 0 \) がある。ただし後者の場合で、2相流体の界面が静かに移動する場合は非混合性として取り扱うこともある。

さて、このような自然対流の解析においては、一般に解を求めることが極めて困難であり、多くの場合数値解法が用いられる。そこで密度差による自然対流に起因する物質移動の例として、図-8に示すように幅40 cm、高さ10 cmの多孔質体中の混合流を考える。
地下水中の物質移動

図6 移流と線形・可逆・非平衡吸着による物質移動における離脱係数mの影響

図7 移流、分散、及び線形・不可逆・非平衡吸着による物質移動における分散の影響

周囲が不透過性の多孔質体構造の右半分は密度が1.022g/cm³の塩水、また左半分は密度が0.998g/cm³の淡水で飽和されており、最初は中央部のセパレータで分離されている。時刻$t=0$においてセパレータを取りはずし、重い塩水が軽い淡水の下にくぼむ。図8の実線は$t=0.0, 5.074, 8.955, および16.849$分後の界面の位置を実験により求めたものである。なお数値解法には特有の曲線法と有限要素法を組合せた方法を用いており、図中の数字1および0は塩水および淡水の流体粒子の位置を示したものである。一方図8の8.044のそれぞれの時間における多孔質体中の流速ベクトルを示したものである。図8より界面はほぼ直線的に回転し、また流速ベクトルは界面を中心として椎円状に分布することがわかる。
図8-A〜D
密度流による淡水・塩水2相界面の移動（A〜Dにおける数字0及び1は淡水及び塩水の流体粒子の位置を、a〜dにおける矢印は流速ベクトルを、また図中の実線は実験により得られた2相界面の位置を示している）
地下水中の物質移動

図8-a～d
表-1 試験流域の浅層地下水の深度別T-N濃度分布

<table>
<thead>
<tr>
<th>Well No</th>
<th>Depth</th>
<th>T-N</th>
<th>Depth of Water Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0m</td>
<td>23.6 mg/l</td>
<td>0.80m</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.45</td>
<td>42.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>40.5</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>50.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>70.8</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>77.3</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>82.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well No</th>
<th>Depth</th>
<th>T-N</th>
<th>Depth of Water Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2.0m</td>
<td>82.4 mg/l</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.0</td>
<td>39.8</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>44.2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.0</td>
<td>34.7</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>29.3</td>
<td></td>
</tr>
</tbody>
</table>

表-2 試験流域の浅層地下水の深度別水温分布

<table>
<thead>
<tr>
<th>Well No</th>
<th>July 5-6, 1981</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0m 12.8°C</td>
<td>* Temperature at ground surface=23.1°C</td>
</tr>
<tr>
<td></td>
<td>0.5 10.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 9.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 9.4</td>
<td>Groundwater depth=0.8m</td>
</tr>
<tr>
<td></td>
<td>2.5 9.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0m 12.7°C</td>
<td>* Groundwater depth=1.24m</td>
</tr>
<tr>
<td></td>
<td>0.5 11.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 10.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 10.9</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.0m 16.0°C</td>
<td>* Groundwater depth=0.33m</td>
</tr>
<tr>
<td></td>
<td>1.0 10.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0 8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0 8.6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.0m 14.4°C</td>
<td>* Groundwater depth=1.35m</td>
</tr>
<tr>
<td></td>
<td>0.5 14.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 12.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 11.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 11.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 10.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March 23-30, 1983</th>
<th>Depth</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0m</td>
<td>7.0°C</td>
<td>* Groundwater depth=1.53m</td>
</tr>
<tr>
<td>1.93</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>0.0m</td>
<td>8.57°C</td>
<td>* Groundwater depth=1.97m</td>
</tr>
<tr>
<td>2.19</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>0.0m</td>
<td>7.05°C</td>
<td>* Groundwater depth=0.87m</td>
</tr>
<tr>
<td>4.85</td>
<td>7.20</td>
<td></td>
</tr>
<tr>
<td>0.0m</td>
<td>8.3°C</td>
<td>* Groundwater depth=1.90m</td>
</tr>
<tr>
<td>3.40</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

SPCPG April 1984
Ⅳ 野外における調査結果と問題点

地下水中の物質移動の実態を調べるため、冬期に標高の高いM川流域において地下水の水質および水温の調査を行った。なお本流域は火山活動によって形成された火山性谷である。平均水深は約1,150m、傾斜の標準は900〜1,000mで、土地利用形態はキャベツやカレタなどを農地が中心となっている。

本流域の地下水中の窒素素は大部分が硝酸態の形をとり、表層より供給されているものと考えられる。いま不圧地下水の流れがボンチャル変形に起因する挙動対流のみであるとするならば、地下水の流れは地表面に平行に流れることが予想され、地表面に近い程、地下水中の窒素素濃度が高くなるものと推定される。表1は本流域における浅層地下水中の深度別全窒素素濃度を調べたもので、予想しては深度別にある程度窒素素濃度差は見られなかった。この理由は次のように考えることができる。つまり密度の大きな浸透水は、それより小さな密度の地下水中を降下することが知られており、融雪期の冷たい浸透水が混じって地下水中を降下するとすれば密度は密度流により鉛直方向に混合されることになる。すなわち、いま密度の基準値をρ0とする(1)式は

$$ q = -\frac{\rho_0 g}{\mu} \left(\frac{P}{\rho_0 g} + Z \right) - \frac{(\rho - \rho_0)g}{\mu} \nabla Z $$

と書き換えができ、地下水中に密度差があれば(2)式の右辺第2項により対流が発生する。参考までに4.0℃と15.0℃の水の密度は1.000000g/cm³および0.999177g/cm³と、その密度差は淡水と海水差は大体なく、透水性が良好な帯水層では密度流の発生が十分考えられる。そこで7月と8月に本流域の地下水層の鉛直分布を調べたところ、地下水層と井戸層の水温の差は7月中旬で1.8〜7.4℃であったのに対し、7月下旬での約0.1℃とはほとんど差が認められなかった。これは融雪期に地下水中に密度流が発生している可能性を示唆するものである。実際に、谷口らが長岡市において地下水温の鉛直分布を調査した結果でも、夏季には熱伝導のみによる地下水温鉛直分布の解析解が実測値とよく一致している反面、融雪期には実測値の方が解析解より低温域が深くなっている。このような地域において地下水中の物質流動を解明するためには、物質移動のみならず、流体移動や熱移動も合わせて考える必要があると思われる。

謝辞

現地調査においては信州大学教養部松田和三教授、農業土木試験場細野雅男教授を含む研究室の皆様に御懇願なる御指導、御努力をいただいた。また調査の実施に際し、現地の役場の関係各位には種々の便宜を図っていたただいた。ここに深く感謝の意を表します。

引用文献
1) 錦織克之：産経の地下水汚染，地質学論集，23，pp.115〜121 (1983)
4) 井上隆弘・三輪聡則：土壌中のイオン移動現象への化学的接近法と物理的諸問題，土壌の物理性，41, pp.25〜35 (1980)
7) Freeze, R.A. and J.A. Cherry: Groundwater, Prentice Hall, Chap. 9 (1979)
14) Fujinawa, K.: A "characteristic" finite element method for dispersion-convection equation, J.

SPCPCG April 1984
日本地下水の物理特性 第49号

15) 藤原克之 特性曲線型有限元要素法を用いた密度差のある地下水流動の数値解析 - 水・塩水2相流への応用 - 日本地下水学会誌 26(1), (1984)

18) 谷口真, 須根 勇: 長崎地域における地下水温の三次元的分布, 昭和58年度日本地下水学会秋季講演会講演要旨集 pp. 18-21 (1983)

質疑応答

村岡（公害研） 地下水が、温度不安定によって対流をおこすことはありうると思う。ただ湖の対流と違うので、地下水のようないくつかの中での対流は、レイリー数と冊であるのが定義されれば、理論的なアプローチでもできるだろうが、やはり、違う面があるだろう。地下水そのものの流速が遅いため、対流にかかわる時間もかなり要する。実際に見事、湖が大循環をおくにじるに、地下水の中でも対流が生じているということは、鉱直方向に完全に混合して一様になるという現象が現に生じているという証拠をつかんでみないと、よくわからないのである。

藤原 その通りと思う。井戸水で騒ったところ、水場に温度分布が均一になっているという結果が得られた。しかしこれが井戸の中だけの対流なのであろうかということを、これから、つめしくなたなければならいない。さらに、圧力差による、地下水の動きが起きないような場合を想定して、土層の下部から、熱源を与えてやる。例えば、温泉地帯などでもそうであるが、地下に熱源がある所では、地下水が流れているという研究結果がある。この場合は、温泉地域の高温層、あるいは緩やかな温度で、冷凍水の浸透や地表面の冷却だけでも密度流が本当に起きるのかどうか、確かめなければならない。

近藤（筑波大） シミュレーションを行う場合に、数値的な誤差は非常に厳重に考慮されていたが、一般に、よく用いられる三角形要素を用いてシミュレーションをした場合、外野に適用した場合の誤差ということは、新しい手法についてどうだろう。実際値と、誤差を含んだものと思うが、三角形要素を用いた場合の計算結果の誤差について、どう考えているか。

藤原 有限要素法を用いる時に、メッシュ、三角形にしなければならないというのは怒らず、四角形など用いた例は数通りもある。誤差について、現場での値を単に仮想モデルで計算した場合に誤差はどうだろうかということですが、三角要素にした方が四角要素よりも精度が落ちるということはないと思う。理論的には要素の大さや形状によって要素のとり方に関する誤差が決定される。また、座標関数の与え方にも、色々ある訳で、私、線形の座標関数を使うが、非線形の座標関数もある。そういう厳密な手法を用いると勿論、解析の精度は上がるが、厳密にすればほど、沢山のデータが必要になるという点もある。精度を上げるために、どんなメッシュをさしていれば現場に本当にあうかどうかということは、現場でパラメータを実際に変更するのには非常に困難な問題であり、そのへんのあきらめに終わるのだと判断している。

岩田（築工士） 波多野さんの場合は、単純な解析法が適用できなかったということが問題の出発点となっていのあるけれども、藤原さんの場合は、非常にきついにあつた例があったが、土層としては、砂の中でしょうか。

藤原 単純にシミュレーションを行ったりとある場合、特に砂層、粘土層というように、最初に係数を与えて戦ったわけではないが、単に計算上だけの問題ではないとも、透水係数が高くて低くても理論は合うと考える。利根川の伏流水の地下水流速を測定した例を示せば、土層で粒径が自然に変化させられた非常の一様な層です。