

粘性土の塑性限界の測定における

フォールコーン試験の適用性

甲本達也*

Applicability of the Fall Cone Test for Measuring the Plastic Limit of Cohesive Soils Tatsuya KOUMOTO Faculty of Agriculture, Saga University, Saga

1. はじめに

現在行われている土の塑性限界の測定方法は簡単では あるが,試験者の手加減が影響しやすく1),力学的意味 がはっきりしない等の欠点がある。これに対して箭内 ら²⁾の整形した供試体を一定高さから落下したときの 変形量から塑性限界を推定しようとする試みは興味深 く,北郷ら³), Campbell⁴),甲本⁵),のコーンを一定高 さから自由落下させたときの貫入量から塑性限界を推定 しようとする試みは塑性限界の簡易測定法として注目さ れる。特に甲本⁶⁾はフォールコーンの貫入機構を明ら かにするとともに、フォールコーン試験による液性・塑 性両限界の同時測定法の提案5)をも行っている。しか し提案によるフォールコーン法の場合、コーン重量は Q=0.6Nとしているため塑性限界状態のように粘性土 の強度が大きくなると貫入量が極端に小さく(約1.3 mm)なり測定精度が問題となると思われる。本論文は, 先のQ=0.6Nコーンを用いた試験⁵⁾の追加試験とし て更に重量の大きいコーンを用いてフォールコーン試験 を行い、粘性土の塑性限界の測定の適用性を測定精度の 点から再調査したものである。

2. フォールコーン試験

ーフォールコーン試験は表-1に示すような物理的性質 を有する11種類の粘性土について行った。使用したコー ンは先端角2 α =60°, 重量Q=10N(60°, 10Nコーン と称す)のものである。これは供試体の含水比が塑性限 界近傍になると剪断強さは相当大きくなることが予想さ れたことから、このような供試体に対して少なくとも5 mm くらいの貫入量が得られるようにしたためである。

*佐賀大学農学部 〒840 佐賀市本庄町1 土壌の物理性 第62号 p.63~67 (1991) 試料容器は内径100 mm, 深さ50 mm の円筒容器とした。 貫入装置には図-1に示すような骨材試験用の引かき硬 度測定器を改良したフォールコーン試験器(シャフトの 先端にコーンを取り付けシャフトとコーンの重量を10 N にしたもの)を使用した。試験は各供試土の含水比を塑 性限界近傍から液性限界近傍まで数段階に変化させたも のを容器に充塡し, コーン先端を試料表面に接した状態 からコーンを自由落下させ貫入量の測定を行った。試験 は同一供試体について5回ずつ, その都度詰めなおした ものについて行った。尚,供試体は含水比調整後1週間 から10日間の養成を行って供試体内部の含水状態の均一 化を計った。

図-1 引かき硬度測定器を改良したフォールコーン 試験器

試 料	真比重 Gs	液性限界 W _L (%)	塑性限界 W _P (%)	塑性指数 I _P
陶土	2.680	38.3	23.8	14.5
M 1	2.673	30.0	14.1	15.9
有明粘上	2.584	130.0	48.9	81.1
M 2	2.761	121.8	24.6	97.2
M 3	2. 733	204.4	25.1	179.3
M 4	2.653	261.0	39.2	221.8
M 5	2.653	264.0	23.9	240.1
M 6	2.589	282.8	29.2	253.6
M 7	2.685	303.5	27.4	276.1
M 8	2.726	336.0	32.2	303.8
ベントナイト	2.743	402.0	35.6	366.4
M1:陶土/標準砂・・・・・・・・・10:3				
M 2 :陶土/ベントナイト・・・・・・・・5:2				
M3:陶土/ベントナイト・・・・・・・・1:1				
M4:ベントナイト/有明粘土・・・・・・5:2				

表-1 供試土の物理的性質

M5:ベントナイト/標準砂・・・・・・ 10:3 M6: 陶土/ベントナイト・・・・・・・・2:5 M7:ベントナイト/標準砂・・・・・・・5:1 M8:ベントナイト/標準砂・・・・・・・ 10:1

3. 結果および考察

1) 貫入量hと含水比wとの関係:図-2はフォー ルコーン試験結果の例を示したものである(hとwとの 関係を両対数紙上に示した)。図によればいずれの供試 上の場合もhとwとの間には両対数紙上で直線関係が 認められ、次式が成立する。

$$\mathbf{h} = \mathbf{A}\mathbf{w}^{\mathbf{B}} \tag{1}$$

ただし, Aおよび Bは土の種類により異なる定数。

いま, log(h) - log(w)間に直線関係をあてはめ, 最 小自乗法により直線式を求め実線にて図に示した。これ らの直線式は非常に高い相関係数(0.97以上)のもとに 得られた。この直線関係は北郷ら,3)藤川ら7)および甲 本⁵ によって実験的に得られた結果とも一致するもの である。

2) 塑性限界時の貫入量 hp: 図-2 に示す log(h)

-log(w) 直線上においてカサグランデ法による塑性限 界wpとの交点のhの値を塑性限界時の貫入量hpとし, このようにして得られた hpの値を塑性指数 Ipに対して 示したものが図-3である。図によればhpはLpによら ずほぼ一定となるようで、その平均値を求めると、hp= 5.4mmが得られた。

いま、図-2において log(h) - log(w) 直線上の貫入 量h=5.4mmの時の含水比を求め、現行のカサグラン デ法による塑性限界と対比したものが図-4である。図 にはまた60°, 0.6 N コールよりのデータをも示してい る。図によればコーンの重量にはあまり関係なく、両方 法による測定値はよく一致しておりその誤差はたかだか ±10数%であった。

図-2 フォールコーン試験結果の例 (60°, 10Nコーン使用)

図-3 塑性限界時の貫入量hpとIpとの関係 (60°, 10Nコーン使用)

4.結 論

塑性限界の測定におけるフォールコーン試験の適用性 を、2 α =60°, Q=10Nコーン(60°, 10Nコーン)を 用いて11種類の粘性上について実験的に検討を行うとと もに、既存の2 α =60°, Q=0.6Nコーン(60°, 0.6N コーン)の実験結果との対比を行った。

実験によれば、 60° 、10 N = - > を用いた場合も貫入量 h と含水比 w との関係は両対数紙上で直線で表された。この直線上において、カサグランデ法の塑性限界に対する貫入量 h は粘性土の種類には関係なく h = 5.4mm とほぼ一定であった。

以上のことから、フォールコーン試験において 60° , 0.6Nコーンの貫入量hがh=1.3mmの時の含水比w, または 60° , 10Nコーンの貫入量hがh=5.4mmの時 の含水比wを塑性限界とみなし得ることがわかる。し かし、塑性限界のみが測定の対象となるような場合、こ の様な比較的硬い状態の上に対しては 60° , 10Nコーン の方が 60° , 0.6Nコーンより貫入量を大きく、しかも 容易に測定できるので実験上有利と言えよう。

引用文献

- 1) 占藤田喜久雄:第6章 液性限界, 並性限界, 土質試 験法, 土質工学会編, p. 128 (1979).
- 2)箭内寛治・西堀高弘・五味貞夫:塑性限界を求める二 つの近似簡便法の試み,第3回土質工学研究発表会,昭 和43年度発表講演要旨,pp.299-304 (1968).
- 北郷繁・益田栄治:液性限界測定に関する実験的研究 (第4報),土と基礎, 17-9, pp.5-14 (1969).
- 4) Campbell, D. J.: Plastic Limit Determination Using A Drop-Cone Penetrometer, Journal of Soil Science, 27, pp. 295-300 (1976).
- 5) 甲本達也:フォールコーンテストによる粘土の液性・ 塑性両限界の決定,農土論集,146,pp.95-100 (1990).
- 6) 甲本達也:フォールコーンテストの動的解析, 農土論 集, 144, pp.51-56 (1989).
- 7)藤川武信・甲本達也:フォールコーンの貫入に関する
 三次元的解析,農士論集,83,pp.38-43 (1979).

土壌の物理性第62号(1991)

Summary

An investigation was made on the applicability of the Fall Cone Test for determining the plastic limit of cohesive soils.

The test was carried out by using $2\alpha = 60^{\circ}$, Q = 10 N cone (60° , 10 N cone) where α and Q are semiangle of the cone tip and the cone weight, respectively, on 11 cohesive soils. The test results were compared with those obtained previously using $2\alpha = 60^{\circ}$, Q = 0.6 N cone (60° , 0.6 N cone).

According to the results, the penetration depths h_p read at the Casagrande plastic limit on the logarithmic penetration (h) vs logarithmic water content (w) straight lines became constant and took the mean value of $h_p = 5.4$ mm.

The accuracy of the plastic limits determined by using 60° , 0.6 N cone and 60° , 10 N cone for those by the Casagrande method was found to be almost same. However, 60° , 10 N cone should be preferably used rather than 60° , 0.6 N cone in case that the Fall Cone Test was carried out to determine only the plastic limit.

(Soil Phys. Cond. Plant Growth, Jpn., 62, 62-66, 1991)