Ion concentrations and pH of Soil Water after Repeated Addition of Acid Solutions

Susumu Matsukawa, Hidemasa Katoh, Heisirou Tomita and Takashi Suzuki*

* Faculty of Agriculture, Utsunomiya University

Abstract

pH of soil water change with addition of acid solution is a complex physicochemical process. In this study repetitive addition of acid solution experiments were combined with chemical equilibrium model to simulate pH change for Allophanic soil. pH of soil water after added nitric acid solution was decreased rapidly than that of sulfuric acid solution. After three to six times repetitive addition of pH2 nitric and sulfuric acid solution pH was held as constant in both solutions due to buffering capacity of mineral weathering.

Ion activities and ion–pair concentrations were calculated to determine the constant of aluminum solubility and sulfuric ion sorption isotherm. Aluminum solubility in nitric acid solution was large compared with that in sulfuric solution. Sulfuric ion adsorption was described well by Langmuir equation.

Simulation model of pH in equilibrium soil water were composed of aluminum dissolution, formation of the three aluminum species, aluminum-dominated divalent base cations exchange, bicarbonate formation, sulfuric ion adsorption, charge balance and mass balance of sulfuric ion and base cations respectively.

Buffering capacities due to weathering of minerals were not negligible. Then, aluminum–base cations exchange were lumped together with mineral weathering as neutralization effects in the model. pH of soil water could estimate with standard error less than ±pH 0.2 by this model.

Key words: aluminum solubility, ion concentration, pH prediction, buffering capacity

1. はじめに

酸性雨による土壌や作物への影響について岡崎（1994）は、作物の生育に必要なCa, Mg, K, Na等の陽イオンの溶脱、アルミニウムの溶脱による土壌溶液中のアルミニウムイオン濃度の上昇などを指摘している。特に、黒ボク土壌の場合アルミニウムの溶脱度が大きく、作物根に毒性を及ぼす直接的影響とアルミニウムイオンの溶脱による地下水や河川の汚染、魚類や人間への影響も懸念されている。

そして、これらのイオンの溶脱は土壌中の水分移動・溶質移動など土壌の物理性と密接に関連した事象として理解される。特に、酸性雨の影響を受けた土壌中の溶質移動は、従来の2〜3成分系の溶質移動（取出ら（1991）など）のように、イオン交換に関する選択係数や分散・拡散係数などから予測できる現象より複雑と推定される。すなわち、主な陽イオン間のイオン交換、アルミニウムの溶脱やアルミニウムイオンが関与するイオンペア生成、硫酸イオンなどの陰イオン吸着、図の風化による緩衝機能などを組み入れる必要がある。

このように、酸性雨の影響を受けた土壌中の溶質移動は、土壌の化学現象と物理現象を結びつけることでより、始めて総合的な影響評価が可能になると言える。

このため本報では、両現象を結び合わせた研究の重要
性を念頭において, その第1段階として化学反応の解析を図った.すなわち, 酸性雨の上から硫黄, 硝酸溶液を廃し再び黑ボケ土壌に添加し, 土壌と反応させた場合一について, 溶液中の各種イオン濃度とpHの予測を試みた.ただし, 酸化荷電の占める割合が多いため黑ボケ土壌への適用例は殆ど無いため, 酸性の風化過程を考慮した陽イオンの動態を表す化学平衡式のパラメータを試算的に与える等, いくつかの仮定を前提にイオン濃度やpH予測の検討を行った.

2. 測定方法と計算方法

1) 供試土壌の化学的特性

土壌は東京都大学農学部附属農場牧草畑の深さ40cmから60cmより採取し, 含水比を調整後2mmふるい通過分を用いた. 供試粘土鉱物は, Al-非晶性酸化物で, 他にカオリん鉱物およびバーミキュライトを含んでいた. 有機物含有率は2.08%, CECは22.36 cmol (+)/kg, 塩基飽和度が63.7%（当量率0.0644, pH (H₂O) 4.93であった）(角保ら（1995）)。

荷電曲線より等電位点はpH 6.5付近で, pH 7における0.2mm厚さのアンモニウムによるCECとAECはそれぞれ6cmol (+)/kgと4cmol (-)/kgであった. 等電位点以下のpHの低下によりCECの減少とAECの増加を示し, 残イオン吸着挙動が増加することが予測された。

2) 土壌への酸性溶液添加と濃度測定

土壌への酸性雨の降下と, それに続く排水の繰り返しを模型実験で再現することとした. 測定はBloomら（1985）の方法に準じて行った. 50ml速沈管に風乾5gを入れ, 最初に蒸留水35mlを添加し初期条件とした. 蒸留水添加後振とう後で18時間緩やかに振とうし, 速冷後上澄み液を注意深くビペットで30ml採取した. 採取液のうち5mlを用いて直ちにガラス電極法でpHを測定し, 残りは試料瓶に入れて4℃の冷蔵庫で保存した。

上澄み液採取後の速沈管にはpHを調整した硫酸溶液か硝酸溶液を30ml添加し, 18時間振とう, 速冷後分離, および上澄み液を所定回数繰り返した. ただし, 硝酸溶液添加の場合は, 速冷分離した後に次に黒土が沈殿し速沈管中で固まるため, 次の振とうを行う前に固まることを良くするため操作を行った. 試料瓶中の上澄み液は0.45μmのフィルターを通し微生物を除去した後, 窒素気流により, Al, Ca, Mg, K, Na濃度を測定した. また, イオンクロマトグラフィー法によりNO₃, SO₄, Cl濃度をそれぞれ測定した. ただし, HCO₃はpHと二酸化炭素分圧から計算し, 10種のイオン濃度を測定値とした。

なお, 各測定は2本の速沈管で行い, その平均値を測定値とした. また, 溶液採取後の残留水量は次のように求めた. 速沈管重, 干土重（風乾土重と含水比より算出）を求めており, 溶液採取後の（速沈管重+（水分量）+（乾土）重）を測定毎に0.01g精度の電子天秤で測定し, 残存溶液重を算出した. また, 酸性溶液添加量は10mlビペットによる添加量とし, ±0.1ml程度の誤差で求めた。

3) アルミウムの溶解度線

活動度係数はディバイヒュッケル式を用いた. 各イオン濃度は各振とう回数毎に得られる測定値を初期濃度と見なし, アルミウムイオン濃度, 硫酸イオン濃度, カルシウムイオンの合量計算値が, 各振とう回数毎に得られる測定値に合致するまで計算を繰り返した. ただし, [i] (イオン濃度測定値-合量計算値)÷イオン濃度測定値の相対誤差が0.5%以下を収束条件とした.

また, 三枝（1995）によれば, 土壌溶液中のアルミニウムの存在態を1とするとき, 粘土構成成分としてのアルミウムは10万〜100万倍も存在する. そこで, 一連の速沈管振とう実験で得られたアルミニウムイオンは, 酸性溶液添加数回に新たに溶解したと見なした. アルミニウムイオンと水素イオンの活動度の負の対数をプロットし, 直線回帰より硫酸と硝酸イオン添加時の溶解度線を求めた.

4) 硫酸イオン吸着曲線

2. 3) で述べた方法で求めた硫酸イオン濃度と, その時の硫酸イオン吸着量の関係を次的方法で算出した.

W₅: 試料乾土量（g）, C₁: 1回目の蒸留水53ml添加時の硫酸イオン濃度計算値（mol/l）, V₁: 全溶液量（l）, V₁: 上澄み液採取後の残留溶液量（l）とすると. また, Co: 添加する硫酸溶液の濃度（mol/l）, V₀: 添加硫酸溶液量（l）, C₂: 2回目添加後の硫酸イオン濃度（mol/l）, V₂: 2回目の全溶液量（l）, V₂: 2回目の上澄み液採取後の残留溶液量（l）と表す. 1回目と2回目の硫酸イオン減少量は, (C₁×V₁+V₀×Co)−C₂×V₂
表1 イオンペア濃度計算に用いた化学平衡式、平衡定数、条件式

<table>
<thead>
<tr>
<th>1. 測定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al^{3+}</td>
</tr>
<tr>
<td>Ca^{2+} + SO_{4}^{2-}</td>
</tr>
<tr>
<td>Mg^{2+} + SO_{4}^{2-}</td>
</tr>
<tr>
<td>K^{+} + SO_{4}^{2-}</td>
</tr>
<tr>
<td>Na^{+} + SO_{4}^{2-}</td>
</tr>
<tr>
<td>Ca^{2+} + CO_{3}^{2-} + H_{2}O</td>
</tr>
<tr>
<td>Ca^{2+} + CO_{3}^{2-} + H_{2}O</td>
</tr>
<tr>
<td>Mg^{2+} + CO_{3}^{2-} + H_{2}O</td>
</tr>
<tr>
<td>Mg^{2+} + CO_{3}^{2-} + H_{2}O</td>
</tr>
<tr>
<td>Na^{+} + CO_{3}^{2-} + H_{2}O</td>
</tr>
<tr>
<td>Na^{+} + CO_{3}^{2-} + H_{2}O</td>
</tr>
<tr>
<td>Al^{3+} + H_{2}O</td>
</tr>
<tr>
<td>Al^{3+} + 2 H_{2}O</td>
</tr>
<tr>
<td>Al^{3+} + 3 H_{2}O</td>
</tr>
<tr>
<td>AI^{+} + 15 H_{2}O</td>
</tr>
<tr>
<td>Al^{3+} + SO_{4}^{2-}</td>
</tr>
</tbody>
</table>

2. イオンペア

3. 電気的中性条件

4. 質量保存則

5. 酸性溶液添加によるイオン濃度と pH 予測

酸性溶液を塩基に浸透した場合の pH やイオン濃度の予測については、Reuss (1980) などで多数の試みがある。しかし、変異荷電を持つ黒ポット塩基への適用は殆ど試みられていない。そこで、Reuss (1986) の手法に準じて溶出管測定データへの適用を試みた。ただし、ここでも短期間の予測は前提に化学反応のみ、微生物などによる生物的反応は省略した。

また、陽イオン交換は Cosby ら (1985) のように重要示す陽イオン交換を考慮して未知パラメータを多くなり、塩基類の質量保存則の充足計算も複雑となる。さらに、塩基の振幅は自然の土壌反応により異なり、鉱物の風化による影響が大きいと考えられる。

そこで、アルミニウムイオンと他の陽イオン (Ca, Mg, K, Na の合計) とのイオン交換、および鉱物の風化過程を考慮したイオン交換の動態を表す式が近似的に成立立つと仮定した。そして、これらの反応を Ganes-Thomas 式 (1953) に適用し、イオン交換 (Ca, Mg, K, Na の合計) と風化によるイオン放出量の計算を Ca とした結果、Ganes-thomas 式中の Ca の収放分率は鉱物による風化も加味した値として、平衡定数とともに算出的に与えることとした。

すなわち、鉱物の風化により塩基類が放出されることで一要なる供給源があると見なし、陽イオンの当量分率を求める際、CEC (22.36 cmol (-) /kg) を一定に仮定した。そして、陽イオン交換と鉱物の風化による塩基類放出を 1 式に分けて表した。また、化学平衡式と陽イオンに関する質量保存則を満足するような当量分率を繰り返し計算により求めることとした。計算に用いた反応式、平衡定数、条件をまとめして表2に示した。
表-2 酸性溶液添加によるイオン濃度計算に用いた化学平衡式、平衡定数、条件式

Table 2 Chemical equations, equilibrium constants and conditions in evaluation of ion concentrations with consecutive addition of acid solutions.

1. アルミニウム結晶の溶解と加水分解

(1) \((\text{Al}^{3+}) = 4.296 \times 10^6 (\text{H}^+)^{1.3217} \) (硫酸)

(2) \((\text{Al}^{3+}) = 1.231 \times 10^6 (\text{H}^+)^{1.3211} \) (硝酸)

(2) \(\text{Al}^3+ + \text{H}_2\text{O} = \text{Al(OH)}^2+ + \text{H}^+ \) \(\log K = -5.02 \) (Wolt 1994)

(3) \(\text{Al}^3+ + 2\text{H}_2\text{O} = \text{AlO}_2^- + 2\text{H}^+ \) \(\log K = -9.30 \) (Wolt 1994)

2. 陽イオン交換

(4) \(2 \text{Al}^3+ + 3 \text{ExCa} = 3 \text{Ca} + 2 \text{ExAl} \) \(\log K \) (仮定)

ただし、Ca は全塩基性、Ex は当量分率で ExCa + ExAl = 1

3. 硫酸塩平衡

(5) \(\text{CO}_2 + \text{H}_2\text{O} = \text{H}^+ + \text{HCO}_3^- \) \(\log K = -7.82 \) (Wolt 1994)

4. 硝酸イオン吸着とイオンペア

(6) \(\text{SO}_4^{2-} (\text{mol/g}) = \frac{1.644 \times 10^{-5} \times [\text{SO}_4^{2-}]}{5.282 \times 10^{-4} + [\text{SO}_4^{2-}]} \) (実測)

(7) \(\text{Al}^3+ + \text{SO}_4^{2-} = \text{AlSO}_4^- \) \(\log K = 3.20 \) (Wolt 1994)

5. 電気的中性条件

(8) \(\Sigma \text{C}_i \times \text{Z}_i = \Sigma \text{C}_i \times \text{Z}_i \)

6. 質量保存則

(9) \(\text{SO}_4^{2-} : \) 残溶液中 \(\text{SO}_4^{2-} + \) 吸着 \(\text{SO}_4^{2-} + \) 添加 \(\text{SO}_4^{2-} \)

平衡 \(\text{SO}_4^{2-} \) 溶液濃度×全水量+平衡吸着量（mol）

(10) \(\text{Ca} : \) 残溶液中 \(\text{Ca} + \) 吸着 \(\text{Ca} = \) 平衡溶液中 \(\text{Ca} + \) 平衡吸着 \(\text{Ca} \) （mol）

3. 測定結果と計算結果

1) アルミニウムの溶解

\(\text{pH} 2 \sim 4 \) の硫酸、硝酸溶液を繰り返し添加した場合の、\(\text{pH} \) と \(p(\text{Al}^{3+}) \) の関係を図-1に示した。硫酸と硝酸を添加した場合のアルミニウム溶解はそれぞれ次の(1), (2)式の図示式で表すことができる。

硫酸溶液では、

\((\text{Al}^{3+}) = 4.296 \times 10^6 (\text{H}^+)^{1.3217} \) (1)

硝酸溶液については,

\((\text{Al}^{3+}) = 1.231 \times 10^6 (\text{H}^+)^{1.3211} \) (2)

硝酸・硫酸溶液全体では,

\((\text{Al}^{3+}) = 2.882 \times 10^5 (\text{H}^+)^{1.328} \) (3)

(1), (2)式の各定数の大きさから、アルミニウムの活動度は同じ水素イオンの活動度では硝酸の方が大きくなくなる傾向、すなわち、硝酸の方がアルミニウム溶解度が大きくなる傾向を示した。

また、硝酸と硫酸全体の図示式（3式）を他の試料と比較し図-2に示した。本実験で用いた試料は溶解度の低

Fig. 1 Relation between pH and p(Al^{3+}) in sulfuric and nitric acid solutions

いGibbsite（加藤ら（1995））と、溶解度の高いAmorphous（加藤ら（1995））の間の溶解度を示した。そして、この両者の（Al^{3+}）は水素イオン活動度の3乗に比
例し直線の傾きが 3 の例である。さらに、和田ら（1994）が求めた九州地方火山灰土のアルカリナウム溶解度と比較すると、高 pH で溶解度が低く、低 pH で大きい傾向があった。そして、火山灰土壌の場合、傾きは 3 より小さることがわかる。これら(1)、(2)式をそれぞれ硫酸、硝酸溶液を繰り返し添加した場合のアルカリナウムイオン活動度計算に用いた。

2) 硫酸イオン吸着曲線
土壤溶液中の硫酸イオン濃度と吸着量の関係に Langmuir 式を適用した結果を図-3 に示した。硫酸イオン濃度が高い範囲の測定値は少なかったが、比較的良く Langmuir 式に適合した。図中の中は硫酸イオン吸着量の計算に用いた。

3) pH 測定値と計算結果
酸性度が大きい pH 2 の硫酸と硝酸溶液を繰り返し添加した場合の pH 測定値を図-4 に示した。硝酸溶液添加の場合、添加回数 3 回目以降はほぼ一定 pH で推移し、硫酸の場合も添加回数 5 回目以降ほぼ一定の pH を示した。

硝酸の方が pH の低下が速いのは硫酸に比較し硝酸の吸着が小さく、配位子交換による OH 放出が少なかったためと考えられる（Turner ら（1991））。また、pH が一定で推移する原因の 1 つは、鉱物の風化によりほぼ一定割合で塩基類放出が行われているためと推定される。

そこで、酸性溶液添加回数毎に還流りの平衡溶液量 (l) と Ca, Mg, K, Na の濃度 (me/l) から、各平衡溶液中の陽イオンの合量 (me) を求めた。次いで、これら陽イオンの合量を単位土壌重当りの量 (me/100 g) に換算し、1 回目から任意の添加回数までの積算値を求めた。そして、積算値を CEC (22.36 cmol (+) /kg = 22.36 me/100 g) で除して陽イオンの当量分率を算出し、図-5 に示す。

図-2 試料のアルカリナウム溶解図比較
Fig. 2 Aluminum solubility diagram to some samples

図-3 硫酸イオン吸着曲線
Fig. 3 Sulfuric ion adsorption curve

図-4 pH 2 硫酸、硝酸溶液添加回数と pH
Fig. 4 pH change with consecutive addition of pH 2 sulfuric and nitric acid solutions

図-5 酸性溶液添加回数と陽イオン当量分率の関係
Fig. 5 Change on cation equivalent with acid solution additions
した。添加回数による当量分率の積算値は低 pH 溶液ほど大きな傾向を示し、添加回数 2~3 回目以降 CEC 測定時の当量分率を上回った。すなわち、上回った当量分率は錳物の風化により陽イオンが放出したと推定された。そして、硝酸の方が大きい傾向を示した。

このため、Gaines-Thomas 式（表-2の(4)式）の陽イオンの当量分率（ExCa）は、図-5中の最大当量分率 0.2 を初期値とした。そして、表-2中の(4)式の平衡定数 logK の値を試算的に与え、測定値との関係最も良い logK を求めた。

図-6, -7 には pH3 硝酸添加では logK=5.0 とした場合、硝酸溶液では logK=5.5 とした時の pH 測定値と計算値をそれぞれ示した。硝酸添加の場合は図-6のように初期と 14 回目で pH 測定値の低下は 0.3 であった。そして、計算値では初期に pH0.2 程度増加し、その後徐々に低下する傾向が得られた。図-7 の硝酸での pH 測定値は初期の pH5.6 から pH4.1 まで低下したが、添加回数 10 回以降は低下の傾向は明らかでなく、ほぼ等 pH0.1 の変動幅で推移した。

図-8 は pH2~4 の硝酸、硝酸溶液添加による pH 測定値と計算値の全データをプロットしたもので、pH の計算は有意水準 95% で約誤 pH0.2 の標準誤差で計算可能であった。

これらの結果から低 pH 酸性溶液を黒ボク土壌に繰り返し添加した場合、錳物の風化による緩衝機能を陽イオン交換に組み入れ、簡略化して計算することの可能性が示唆されたと言える。

4) アルミニウムイオン種濃度比較

図-4 や図-6, -7 に示したように、硫酸溶液添加の場合は硝酸溶液に比較し pH の低下が少なかった。この原因は硫酸イオン吸着による分配子交換により、水酸基が溶液中に放出されることが大きいと考えられる。また、図-1 に示した硫酸添加と硝酸溶液によるアルミニウム溶解の相違が影響していると言える。さらに、硫酸溶液の場合、硫酸アルミニウム（AlSO₄）の生成が関与していることが推定される。そこで、pH3 の溶液を添加した場合について、水素イオンとアルミニウムイオン種の濃度変化を図-9, -10 に示した。

水素イオン濃度を比較すると、硫酸添加の場合の図-9 で 10⁻⁷ のオーダー、硝酸添加を示した図-10 では 10⁻⁷ 〜 10⁻⁸ のオーダーであった。図-9 の硫酸添加の場合、硫酸アルミニウムの濃度が増加し、その分だけ遊離のアルミニウムイオンを減少させる。このため、硝酸添加の場合、アルミニウムイオンの加水分解（表-2の(2), (3)式）
報文: 酸性溶液を繰り返し添加した時の土壌溶液濃度と pH

図9 pH 3硫酸添加時のアルミニウミオン種の計算濃度

Fig. 9 Concentration of evaluated aluminum species and hydrogen ion with pH 3 sulfuric acid solution addition

図10 pH 3硝酸添加時のアルミニウミオン種の計算濃度

Fig. 10 Concentration of evaluated aluminum species and hydrogen ion with pH 3 nitric acid solution addition

により生じる水素イオンを低下させていると言える。また、図10の硝酸溶液添加では、硝酸イオンが系外から供給されないため、硝酸アルミニウムは減少し、アルミニウミオンと水素イオン濃度の上昇を来すと考えることができる。

4. まとめ

酸性雨が土壌中の溶質移動に与える影響把握には、化学特性と物理特性の有機的結合が必要であるとの前提に立ち、アルミニウムの溶解や pH変化の予測を検討した。その結果、低 pH 酸性溶液をアロフラン質黒ボク土壌に添加した場合に、次のように要約することができます。

1) アルミニウムの溶解は硫酸溶液添加の場合、硫酸溶液添加より大きい傾向があった。
2) 硝酸イオンの吸着曲線は Langmuir 式に比較的よく適合した。
3) pH 2 酸性溶液を繰り返し添加した場合、鉱物風化による陽イオン放出の影響が示唆された。
4) 陽イオン交換に鉱物風化の影響を加味した化学平衡式で簡便化し pH の予測を行い、± pH 0.2 程度の標準誤差で計算可能であった。
5) 硝酸溶液添加の場合、硝酸イオン吸着、硝酸アルミニウムの生成などにより pH の低下を抑制することが示唆された。

しかし、各陽イオンごとの交換反応式、硝酸イオン吸着や交換平衡反応、鉱物の風化の平衡式導入などにより、さらに正確な平衡式の組成が必要である。

今後、化学平衡式と水分移動を有機的に結合させるために、Mixing Cell Model（例えば、Appelo と Willemson 1987）を適用し、塩基類やアルミニウムの溶脱を予測する手法を検討する予定である。

なお、本研究の一部は文部省科学研究費（基盤研究（C）②、課題番号 06660286）の補助を受けて行った。記して謝する。

引用文献

岡崎正規 (1994) : 酸性雨4, 酸性降雨物によって土壌はどうなるか, 日土肥誌, 65 (2) : 215-220。
岡本喜夫, 中野政夫 (1991) : Ca^2⁺ – Na⁺ イオン交換を伴う粘土中の溶質移動機構と特性, 土壌の物理性, 62 : 3-11。
和田光史, 山下純一, 和田信一郎 (1994) : イオン交換体組成を異なる火山灰土壌の希酸に対する反応, 日土肥誌 65 (1) : 1-6。

受理年月日 : 1997年6月19日
受理年月日 : 1997年12月18日