常陸太田試験地におけるマクロポアの形態学的特徴と
選択的流出経路の分布に関する研究

野口 正 二*

Morphological Characteristics of Macropores and the
Distribution of Preferential Flow Pathways at
Hitachi Ohta Experimental Watershed

Shoji Noguchi

* Forestry and Forest Products Research Institute

1. はじめに

自然斜面の水移動は一般的に一様とはならず、水のよく透過するところと透らないところが存在する。特に、林地斜面ではマクロポア・パイプが多く存在し、地中における水移動経路を複雑にしている。これまでマクロポア・パイプに関する研究は、数多く報告され、マクロポア・パイプからの流出が洪水時的重要な構成要素であることが認識されている（Tanaka et al., 1988; Tsukamoto and Ohta, 1988; 北村・中井, 1992; Sidle et al., 1995）。

土壌のマクロポア・パイプの構造に関する研究は、実験室レベルでいくつかの方法によって調べられてきた。代表的な手法としてコンピュータ化断面撮影法（CT）を用いた方法（Anderson et al., 1990; Joschko et al., 1993）や軟X線を用いた方法（Takunaga, 1988; 成良, 1990）が挙げられる。また、他の手法として赤外線や石膏を用いて調べた報告がある（北村, 1989; Mortan et al., 1989; Singh et al., 1991）。

土壌のマクロポアに関する物理的特性の空間的平均値を得るためには、比較的広い領域（およそ10-100m）を調査する必要があるとBeven and Germann（1981）は指摘している。しかし、実験室レベルで行われる上記の方法は1-10mスケールで適用することが不可能であり、得られた情報は野外土壌におけるマクロポア・パイプの平均的な特性を把握しているとは言い難い。一方、土壌断面の観察により1-10mスケールでマクロポアの調査が実施されてきた（Jones, 1978; 北村, 1988; Tsukamoto and Ohta, 1988）。しかし、これらの報告はマクロポアの直径や密度に関するもので、他の形態学的特徴に関する情報は十分でない。また、染料を用いて1-10mスケールで、マクロポア・パイプを含む地中の選択的流出経路についても調査されてきた（Bouma and Dekker, 1978; 波多野ら, 1983; van Stiphout et al., 1987）。しかし、これらの報告は限られた範囲での適用が多く、場が異なる林地斜面での適用例はあまり多くない。

林地斜面での地中水の挙動を明らかにするため、マクロポアを含む流出モデルの構築を図るため、マクロポアの分布、方位、長さ、間隔などの形態学的特徴や地中での選択的流出経路を明らかにすることが重要な課題の一つである。

著者は、林地斜面の土壌断面におけるマクロポアの密度、直径、勾配、方位について調査し（Noguchi et al., 1997b）、さらに、斜面長2mの土壌セグメントを対象にマクロポアの長さを測定した（Noguchi et al., 1999）。加えて、2つの染料法を用いてその土壌セグメントにおける選択的流出経路の分布を調査した（Noguchi et al., 1999）。本報では、これらの研究を紹介し今後の研究課題について考える。

2. 試験地の概要及び試験方法

2.1 試験地の概要

本研究は、常陸太田試験地（HO: 36°34’N, 140°35’E, 15.68 ha）内の8箇所（A〜H）と流域外の1箇所（I）を対象に実施された（図1）。本試験地の年間平均降水量は1,485 mmで、地質は緑色変成岩である。流域HB（24.8 ha）は1919年頃に植栽されたスギ・ヒノキで覆われ

* 森林総合研究所森林環境部
〒305-8687 沼城県鹿島郡義崎町松の里1
キーワード：林地、マクロポア、形態学的特徴、選択的流出経路
Fig. 1 Location and topographic maps of observation sites.

Table 1 Physical properties of the A and B soil horizons at soil profile F

<table>
<thead>
<tr>
<th>層位</th>
<th>砂 (%)</th>
<th>シルト(0.02-2 μm) (%)</th>
<th>粘土(<2 μm) (%)</th>
<th>密度 Mg m⁻³</th>
<th>飽和透水係数 ms⁻¹</th>
<th>地圧に対する体積含水率 Mpa</th>
<th>水頭 m³ m⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50.3</td>
<td>33.6</td>
<td>16.1</td>
<td>0.690</td>
<td>2.9×10⁻¹</td>
<td>0.0031</td>
<td>0.695</td>
</tr>
<tr>
<td>B</td>
<td>47.3</td>
<td>36.8</td>
<td>19.5</td>
<td>0.857</td>
<td>3.1×10⁻¹</td>
<td>0.0098</td>
<td>0.695</td>
</tr>
</tbody>
</table>

注：土壌断面におけるマクロボアを目視により識別し、直径2mm以上、長さ20mm以上を対象として測定を行った。調査地A～1において、土壌断面（幅100～160cm）を人力で可能な深さまで掘削し、その断面に対して、1）マクロボアのマーキング、2）土壌断面に10 cmの格子をかけ、マクロボアの位置および土壌層位の測定、3）定規（最小スケール：1 mm）を用いてマクロボアの直径の測定、4）アクリル棒（直径：2 mm、長さ10～12 cm）をマクロボアに挿入し、断面におけるマクロボアの配置および方位をコンパスを用いて勾配と方位の測定を行った。測定方法

で、調査地Fにおける土壌物理特性の測定結果を示す。土壌断面は有機物層を含むA層が薄いことが特徴である（表2）。
表2 上壤断面におけるマクロポアの密度と土壌深さ

<table>
<thead>
<tr>
<th>場所</th>
<th>層</th>
<th>密度 (macropores m⁻²)</th>
<th>厚さ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>最小値</td>
<td>最大値</td>
</tr>
<tr>
<td>地点A-1</td>
<td>断面</td>
<td>5.4</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td>有機物層を含むA層</td>
<td>0</td>
<td>114.8</td>
</tr>
<tr>
<td></td>
<td>B層</td>
<td>6.0</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td>BC層</td>
<td>1.5</td>
<td>11.5</td>
</tr>
<tr>
<td>地点Fにおける断面</td>
<td>断面</td>
<td>16.8</td>
<td>75.1</td>
</tr>
<tr>
<td>No.1〜No.20</td>
<td>有機物層を含むA層</td>
<td>36.2</td>
<td>168.1</td>
</tr>
<tr>
<td></td>
<td>B層</td>
<td>4.9</td>
<td>78.1</td>
</tr>
</tbody>
</table>

図2 上壤断面におけるマクロポアの直径、勾配、方位の測定

(a) Gradient of macropore
Side view at soil profile

(b) Direction of macropore
Top view at soil profile

(c) Diameter of macropore
Front view at soil profile

Fig. 2 Measurement of morphological characteristics of macropores in the soil profile.
(a) The gradient of macropores was defined as 0 for orientation perpendicular to the pit face, with the angles in the upper and lower directions assigned negative and positive, respectively.
(b) The planar orientation of macropores was defined as 0 for the azimuth angle of the pit face, for clockwise and counterclockwise was assigned positive and negative values, respectively.
(c) “a” and “b” are small and large diameters.
の概念図を図-2に示す。さらに、土壌断面のマクロボアの形態学的特徴に対して、異なる空間的スケール（流域内の9地点（A～I）とあたる1地点）での測定結果を検討するため、調査地Fにおいて、斜面下10cm間隔で斜面上方に向かって20断面（斜面長2m）を対象に同様の調査を行った。その際、土壌断面にマーキングされたマクロボアに粉チカラー（赤、青、黄色）を吹き付けてマクロボアのトレスを行い、マクロポアの長さおよび傾曲度を求めた。なお、近接するマクロボアをトレスする際、異なる色の粉チカラーを使用した。調査地Fにおいて20断面のマクロボアを対象とし、マクロボアの離心率（Ecc）および傾曲度（T）を以下の式から求めた。

\[Ecc = \left(\frac{d_2}{d_1} \right)^2 - \left(\frac{d_2}{d_1} \right)^{\frac{1}{3}} \]

ここで、\(d_1 \) と \(d_2 \) はそれぞれマクロボアの最大直径と最小直径である。また、

\[T = \sum l / L \geq 1 \]

ただし、

\[\sum_{i=1}^{n} l = \left[\sum_{i=1}^{n} (x_i - x_{i+1})^2 + (y_i - y_{i+1})^2 \right]^{\frac{1}{2}} \]

\[L = \left[(x_1 - x_n)^2 + (y_1 - y_n)^2 + (z_1 - z_n)^2 \right]^{\frac{1}{2}} \]

ここで、\(L \) は各マクロボアの起点 \((x_n, y_n, z_n)\) から終点 \((x_1, y_1, z_1)\) までの直線距離、\(l \) は土壌断面上のマクロボアをトレスした距離、\((x_n, y_n, z_n)\) は断面1における位置、\(n = 2 \) はマクロボアをトレスした際の土壌断面の数である。

調査地Fにおいて、土壌断面のマクロポアをトレスする前に、白色ペインを散布した。白色ペインは有機物に対する着色の影響を少なくて、林内での地中水の挙動をトレスするための染料として使われている（上村ら、1991: Noguchi et al., 1997a）。散布装置は、土壌断面から斜面長2m山側に設置し、始めに河川水を散布（60L h^{-1}, 2h）し、断面からの流出が定常状態になったのを確認後、水性白色ペイン（20%）に置き換えて散布（60L h^{-1}, 1h）した。なお、散布装置についてはTsuboyama et al. (1994)が詳細に報告している。

3.1 マクロボアの形態学的特徴

土壌断面におけるマクロボアの密度の測定結果を表-2に、直径、勾配、および方位の測定結果を表-3に示す。マクロボアの密度は、有機物を含むA層において0～114.8 macro pores/cm^{3}, B層において6.0～84.0 macro pores/cm^{2}であった。マクロボアの直径は、有機物層を含

<table>
<thead>
<tr>
<th>場 所</th>
<th>層 位</th>
<th>直 径</th>
<th>勾 配</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最小値</td>
<td>最大値</td>
<td>算術平均</td>
</tr>
</tbody>
</table>

| 地点 | 断面 (n=140) | 2 | 40 | 12.3 | 9.7 | -46 | 90 | 1.1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| A-1 | 有機物を含むA層 (n=20) | 4 | 30 | 16.9 | 8.6 | -38 | 36 | -13.0 |
| | B層 (n=103) | 2 | 40 | 10.9 | 9.6 | -46 | 90 | 1.6 |
| | BC層 (n=17) | 5 | 40 | 15.4 | 9.4 | -14 | 54 | 14.2 |
| 地点Fにおける | 断面 (n=453) | 2 | 60 | 16.0 | 9.8 | -72 | 67 | -18.0 |
| | 有機物を含むA層 (n=129) | 2 | 48 | 20.2 | 8.6 | -66 | 36 | -26.0 |
| | B層 (n=318) | 3 | 60 | 14.2 | 9.7 | -72 | 67 | -14.9 |
| | C層 (n=6) | 7 | 38 | 17.3 | 11.7 | -31 | 10 | -8.3 |

ただし、nは測定されたマクロボアの数、地点A-1での結果については、地点Fおよび断面No.1～20の測定結果を表-5に示す。
マクロボアの成因について、全てマクロボアの40、37および19%がそれぞれ地中水による侵食によるもの、植物根系によるもの、および植物根系と地中水の相互作用によるものと推定された。一方、地中水のフラックスの方向は、鉱直方向と斜面勾配との比で示される（Harr, 1977）。また、スギの根系の分布について、刈り（1979）および福永・山寺（1994）によって調査されている。マクロボアの勾配および方位の測定結果は、地中水のフラックスの方向とスギの根系分布調査結果に類似なものであった（図3-3）。このことから地中水や根系がマクロボアの勾配および方位の形成に影響を及ぼしているものと推察される。これらの関係を実証するためには、さらなる野外での調査や実験室での試験が必要であろう。

記載されたマクロボアの約80%は樹円で近似され、その離心率は0.256〜0.998（平均値：0.652）であった。

方向（勾配および方位）の土のマクロボア

<table>
<thead>
<tr>
<th>方位</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>標準偏差</td>
<td>最大値</td>
<td>勾配</td>
<td>算術平均</td>
<td>標準偏差</td>
<td></td>
</tr>
<tr>
<td>26.3</td>
<td>-85</td>
<td>90</td>
<td>2.4</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>-50</td>
<td>68</td>
<td>4.6</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>27.1</td>
<td>-86</td>
<td>88</td>
<td>4.0</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>23.3</td>
<td>-85</td>
<td>90</td>
<td>-4.2</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>22.3</td>
<td>-90</td>
<td>84</td>
<td>-3.7</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>-80</td>
<td>84</td>
<td>-7.3</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>23.4</td>
<td>-90</td>
<td>80</td>
<td>-2.3</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>-90</td>
<td>74</td>
<td>1.3</td>
<td>60.1</td>
<td></td>
</tr>
</tbody>
</table>

を含む

マクロボアに粉チョークを吹き付けストリームされた結果、約70%のマクロボアは1断面内ででき、1%のマクロボアが5断面にわたり連続していた（約40cm）。多くのマクロボア（約80%）は、土壌マトリックス内に深く入っていることが観察された。マクロボアの長さは2.0〜61.8cm（平均値：11.5cm）であった（図4-4）。しかし、マクロボアが白色ペイントに染色された土壌マトリックスと連続して深く入っていることが観察された。このことで、マクロボアは選択的な流出経路として機能している土壌マトリックスと連続して流出に寄与していることを示している。また、いくつかのマクロボアは基岩の亀裂に接続し、その亀裂から流出水が観察された（図6-6）。

図5-5にマクロボアの径高比と長さの関係を示す。マクロボアの径高比は、1.00〜1.52（平均値：1.14）であった。軟X線を用いて84cmの土壌サンプルにおけるマクロボアの径高比を求めた結果、1.2〜2.0の値であった（成岡, 1990）。本研究の結果は、北原（1989）が2,708cmの土壌サンプルを対象に基岩を流れ込み、土壌バイロの径高比を求めた結果（1.0〜1.1）と同様の値であった。これらマクロボアの径高比の値について測定方法が異なるため、直接的に比較することはできない。しかし、軟X線を用いた方法は、本研究での測定方法や基岩を用いた方法と比較して、基岩とのマクロボアと測定可能なサンプルサイズが小さくなる。これからの測定結果から、マクロボアの径高比の値が、本研究や北原（1989）による結果より大きくなくなる理由と考えられた。

3.2 選択性の流出経路

図6-4に白色ペイントによって染色された選択性の流出経路の例を示す。いくつかのマクロボアは、周りの土壌マトリックスと交わらず、流出に寄与していた（図6-4a）。しかし、多くのマクロボアは周辺の土壌マトリックスに拡大し、流出に寄与していることが観察された（図6-4b）。一方、断面においてマクロボアでなく、地脈が発達した土壌マトリックスの領域が染色されているのを観察された（図6-4c）。この部分はB層に存在するが、A層と同じ暗褐色を示す根系が集中していた。また、基岩の亀裂から流出水が観察された（図6-6）。興味深い点として、断面において白色ペイントによって基岩直上のB層の部分が染色されていることが観察された（例えば図6-6a）。このことは、基岩に沿って流出する選択性の流出経路が存在し、地中水の挙動を考えると、基岩地形が重要であることを示している。

おわりに

マクロボアの密度は、有機物層を含むA層において
図-3 斜面における水フラックスと根系の方向とマクロボアの勾配・方位の頻度分布
(a) ヒノキの根系分布の例 (判, 1979) (b) スギの根系分布の例 (福永・山寺, 1994) (c) マクロボアの勾配の頻度分布 (d) マクロボアの方位の頻度分布, ここで q は水フラックス, 歯間の r, d, v はそれぞれ合力, 斜面および鉛直方向を示す。

Fig. 3 Directions of water flux and root systems on a slope, and frequency distributions of gradients and planar direction for macropores. (a) An example of Chamaecyparis obtusa roots (Karizumi, 1979) (b) Horizontal distribution of Cryptomeria japonica roots (Fukunaga and Yamadera, 1994) (c) Frequency distributions of gradient of macropores (d) Frequency distribution of planar direction of macropore. Where q = water flux; r, d, v denote resultant, downslope, and vertical directions.

図-4 マクロボアの長さの頻度分布
Fig. 4 Frequency distribution of length for macropores.

図-5 マクロボアの屈曲度と長さの関係
Fig. 5 Relationship between tortuosity and length of macropore.
図-6 染料によって示された土壌の水移動のいくつかの形態
(a) マクロポアに沿って白色ペイント；(b) 染色されたマクロポアとその周辺の土壌マトリックス；(c) 染色された帯密度が異なる部分；(d) 亀裂からの流出

Fig. 6 Various patterns of water movement in the soil as indicated by dye (a) dye stained along a macropore；(b) stained macropore and soil matrix around it；(c) dye distributed vertical loose zone；(d) water flow from the fractured rock

0〜114.8 macropores/m², B層において6.0〜84.0 macropores/m²であった。マクロポアの直径は、有機物層を含むA層に存在するものか、B層に存在するものより大きい傾向があった。マクロポアの勾配は、斜面勾配と同じ向きの急な勾配を持つものが多く占めた。マクロポアの方位は、80％以上が土壌断面に対して-50°〜+50°の範囲に存在した。土壌断面のマクロポア径、勾配および方位に対して、異なる空間的スケール（流域内の9地点（A〜I）間とF地点での20断面）において、同様の傾向を示した。斜面長2mの土壌セグメントにおけるマクロポアを追跡した結果、マクロポアの屈曲度は1.00〜1.52（平均値：1.14）で、マクロポアの長さは2.0〜61.8cm（平均値：11.6cm）であった。マクロポアが白色ペイントに染色された土壌マトリックスと連結して終結していることが観察され、マクロポアは選択的流出経路として機能している土壌マトリックスと連結して流出に寄与していると考えられた。また、白色ペイントを用いた染色試験により、多くのマクロポアは周辺の土壌マトリックスに拡大し流出に寄与していること、亀裂からの流出や基岩地形が地中水の挙動を予測するために重要であることが指摘された。

常陸太田試験地では、マクロポアを含む土壌断面からの流出に対して混合置き換え実験が実施され、その結果からマクロポアと相互に作用する周辺土壌層の拡大や斜面方向へのマクロポアの伸長が推察された（Tsuboyama et al., 1994）。本研究は、混合置き換え実験の結果を支持するものである。さらに、今回の選択的流出経路の調査結果を踏まえて、自然降雨時におけるマクロポアを含む土壌断面からの流出特性について考察された（Noguchi et al., 2000）。今後、森林流域におけるマクロポア・パイプ流出を含む地中水の挙動を明らかにするために、複数の手法（形態調査、流出・土壌水分の観測、トレーサー試験など）でアプローチすることが有効であるといえる。
近年、ファイバースコープを用いて第四紀砂礫層のパイプの形状的特徴を調査した結果、1m以上の長さがある土壌パイプの存在が報告されている（Terajima et al., 2000）。本研究は、黑潮形成水を主としたスギヒノキを植生とする森林斜面において調査したものである。今後の、異なる地質、気候、植生におけるマクロポア・パイプの形状的特徴および選択的流出経路についての調査事例を積み重ねる必要がある。

謝辞

本研究を遂行するにあたり、フィールドでの測定や議論を頂いた伊根研究所・坪山貞夫主任研究員、細田晴広主任研究員およびシンガポール大学・ロイ・サイドル教授に感謝致します。

参考文献

刈田昇（1987）：樹木根系図解. 112p. 講文堂新光社, 東京.

北原・清・清・真島征夫（1988）：線状土壌斜面側壁のパイプフローの特性. 日本誌, 70: 318-323.

北原・清・中井裕一郎（1992）：1次流域における河川流量とパイプ流量の関係. 日本誌, 74: 49-54.

