土壌・地下水汚染浄化事例と今後の課題

川端 淳一*

Technical and social Issues in On-site Remediation of Contaminated Ground

Junichi Kawabata*
Kajima Technical Research Institute 182-0036 Tobitakyu Choufu Tokyo Japan

1. はじめに

日本では1990年代初頭より土壌・地下水汚染に対する関心が高まり始め、その後土壌環境基準等の法規制の整備、民間主導による浄化技術の開発が並行して進められてきた。しかししながら現在の土壌汚染処理の実態を見ると、優れた技術が適正に評価され、次々と問題が解決される素晴らしい状況にあるとは必ずしもいかない。例えば、技術の検討が十分にされてもかわらず、処理目標が定められずに、コストのみを考慮した処理方法の選択がなされ、結果はいい加減な処理が行われてしまうケース、汚染度汚染が広範囲に拡がっているにもかかわらず、恒久対策にかかる費用の膨大さの前で意思決定が先延ばしされ、結果は対策が施されないケース等々がみられる。

こうした問題は、例えば汚染原因者に法的拘束を強めるという単純な措置のみで解決されるような問題ではない。土壌・地下水の汚染を20世紀の末の遺産として捉え、今後の社会発展にたたん向きの一部として取り入れ対処していかなければならない。具体的には、問題解決のための社会システムの構築、汚染物質挙動とそのリスク評価に関する学際的研究、浄化技術の開発、等がバランスよくみ合って初めて適正な解決へ向かうものと考えられる。

本稿は以上の認識を踏まえ、筆者が携わった土壌・地下水汚染の浄化事例のうち、たとえば水環境基準が設定されていない油汚染の事例と環境基準はあるものの原位置処理に時間のかかる VOC による汚染についてもその事例の一旦を紹介し、土壌・地下水汚染問題の現状とその課題について述べたものである。

2. 油汚染浄化の事例

2.1 背景と処理基準

油による土壌汚染は、天災、事故、戦争などの不可抗力的な事象によって、大規模かつ高度化に拡がっている場合が多く、その認識も高まりつつあり、処理方法・浄化方法についても様々な技術提案がなされるようになってきた。

現在日本では、この油汚染に対する明確な処理基準はなく、油によく含まれている成分のうち土壌環境基準中で有害物質として扱われているのは “ベンゼン” のみである。一方で油を含む廃棄物、汚泥あるいは残土の処分に対しては厳しい法規制があり、特に公共用水域（表流水）への油分の混入のおそれのある場合に対しては、非常に厳しい規制が存在する（表-1参照）。またこれを調査している事例で油成分内の、10数種の PAHs（多環芳香族）それぞれについて基準値が決められていたり（米国、オランダ等）、それに加えて鉱油の総合有量として 0.5 wt％以上を発動基準とする等（オランダ）の基準が見られる（（社）土壌環境センター（1999））。

実際の汚染処理の選択においては、写真 2.3 に示すようなパーセントデータの汚染（汚染数は写真-1）が存在することも珍しくなく、これらの汚染を抱えた現場では、処理目標の設定及びそれに伴う処理方法の選定に苦慮している現状がある。

2.2 汚染の概要

ここで紹介の事例は、事業所敷地内で、不可抗力による原油の濃度汚染が発生した事例であり、汚染濃度 2〜4 wt％（ノルマルヘキサン抽出物質）、土質は概ね細砂である。当該事業所では、事業リスク低減の観点から、当初汚染土数千 m³を全量現場焼却することを計画していたが、コストが高いこともあり事業の進行が難しくなっていた。そこでいくつかの処理方法の案の中から、浄化効果、工期、コスト、環境負荷等を考慮された結果、「気泡連行法」（川端ら（2000））と呼ばれる洗浄技術が採用された。

* 鹿島建設株式会社 技術研究所 〒182-0036 越谷市飛田給 2-19-1
表-1 油に関する各種規制列1)

<table>
<thead>
<tr>
<th>法規名</th>
<th>規制レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>廃棄物の処理及び清掃に関する法律（海洋投棄の基準）</td>
<td>鉱物油排出量 15 mg/L 以下</td>
</tr>
<tr>
<td>海洋汚染防止法</td>
<td>油は排出してならない</td>
</tr>
<tr>
<td>水質汚濁防止法</td>
<td>鉱物油 5 mg/L 以下</td>
</tr>
<tr>
<td>公共路土処分場での規制(財)東京都堆頭公社</td>
<td>15 mg/L 以下及ぶ油膜を生じないこと</td>
</tr>
</tbody>
</table>

また一部においては微生物処理（バイオレメディエーション）も適用された。

2.3 洗浄処理技術「気泡運行法」について

気泡運行法とは、アルカリ溶液中で油の表面張力を減じる物理化学的性質、過酸化水素の自己分解等により発生する超微細気泡が油分を土から剝離し水面に浮遊する性質を利用した油汚染土洗浄浄化技術である（図-1参照）。洗浄水のリサイクル利用が可能であるため、洗浄処理の短所であった水処理の負担が大幅に軽減され、油、土それぞれのリサイクル利用が可能となった。

2.4 処理方法とその経過

本事例では、処理された土を土木資材として再利用することになっていたため、再利用時に問題の起きないことが浄化処理目標設定上の重要な条件となった。その結果、事前処理実験の結果に基づき浄化土の引き取り先が確認した後、処理目標値として濃度 0.05 wt% 程度以下で、かつ異臭がないことという条件が設定された。その結果、図-2に示すような処理方法を提案し、それに基づいて処理が行われた。

この処理で使われた連続処理プラントの概念図図-3に、また油の回収状況を写真-4に示す。汚染土の処理は概ね図-2の処理方法通りに順調に行われた。全体の中の1割程度の低濃度土壌が微生物処理に選ばれたが、既に濃度レベルで 0.1 wt% 程度という低いレベルにされていたので、微生物処理を行ったことによる工期延長はなかった。また回収した原油も精製原料として再利用され、洗浄水についても、ほぼ全量が再利用される形で利用されるなど、本工法の特徴がほぼ発揮される形で工事を終了することができた。

2.5 課題

本事例の処理においては、浄化土が再利用されることとなっていたため、見た目が良いことと異臭がしないという条件で浄化土の引き取り先主導で浄化目標が決められた。

結果的には目標濃度以下で、異臭が発生することはないかったが、濃度と臭いの関係も油の種類、土質、温度によって大きく異なるはずであり、かなりの低濃度レベルまで浄化できたとしても、油の種類によって異臭の有無の条件も違うのではないかと考えた。“臭い”のような主観の伴う項目の判断については、判断は民・民の問題であるが、その評価手法についてはガイドラインが必要である。
図-1 気泡連行法の原理

写真-4 浮上した油の回収状況

図-2 処理システム

写真-5 人工油汚染土での芝の成育実験例（C 重油汚染土使用、約1か月経過後の発芽状況）

写真-6 LNAPL の浸透実験例（細砂層へのトラップ状況）
3. VOC汚染処理の事例

3.1 サイトの概要

工場跡地において環境基準でその基準値が示されているベンゼン、トリクロロエチレンなどによる汚染があったため、これを原位置処理した事例である。汚染サイトの状況と処理方法、目標を下記にまとめる。

- サンプル土壌試料：VOC最高0.2mg/kg
- 処理目標：環境基準値
- 処理方法：ガス吸収法，掘削除去
- 目標工期：6ヶ月

この事例では学識経験者を中心とする委員会が組織されたため、浄化効果の報告を定期的に行われ、そのモニタリング手法においても厳しく管理がなされた。図-4はガス吸収により吸収されたVOCの総量を時系列的に観測した結果である。回収開始後20日間、日回収量はほぼ一定値となり、処理効率が落ち始めている事がわかる。目標工期の6ヶ月後には、砂層についてはほぼ環境基準以下に浄化ができたが砂層の上のホーム・シルト層を中心に浄化効果の十分でない場所が残った。本サイトにおいては工期が限られていたが、浄化の十分でない個所については結果的に施主サイドの負担により掘削除去作業が行われた。

3.2 課題

この事例では、工場跡地でありかつ公的委員会が組織されたため、モニタリング位置とその結果が公開される形で浄化処理が行われた。しかしこれが仮に操業中の工場であれば最終的な掘削除去は物理的に不可能であったし、またモニタリング手法にその方法が標準化されているわけではないため、情報公開がなければ客観的判断を行うことは困難であった可能性がある。

原位置処理工法については、どんな浄化技術を用いたとしても、それをモニタリングする手法や長期的な効果を管理したり調査したりする客観的なマネージメント手法が確立されない限り、十分な技術評価基準がされない可能性がある。こうした事例から、今後モニタリング手法に求める環境リスクの評価、並びにに基づく判断基準の構築などが科学的知見に基づいてなされる必要性がある。

写真-6は揮発性のLNAPLの不飽和層中の浸透実験とその数値シミュレーションを実施した事例である。この実験ではLNAPLが不飽和層中の特に粒径の細かく砂層内に多くトラップされる状況が示されている。さらに同一土層に対してガス吸収等の浄化効果を確める実験が行われた（Waduge et al., 2002）。これらをこうした研究を原位置での処理効果の評価に適用し、浄化効果を判定するための調査手法や判断基準等を構築に活用することが、今後のこの分野で必要な大きな技術的課題であると考える。さらにその際のモニタリング手法についても、原位置処理技術のマネージメントを考える上で重要である。
4. おわりに

最後に本報文で紹介した二つの事例に基づき、土壌・地下水汚染分野の課題として以下の3点を指摘しておきたい。

① 処理目標値あるいはその目標値設定方法の明確化
② 早期の浄化が技術的に困難なサイトにおけるサイトマネージメントのあり方
③ 低コストで処理できる技術的解決策

標記の課題のうち①は最終的には行政が基準を示すべき事柄であり、②是環境リスク評価も含めて、今後ますます学際的な研究の重要な事項である。③は主として民間での一層の努力が求められる分野であろう。このうち特に、①、②については土壌学からの貢献が特に期待されるものと考える。

今後こうした努力が続けられることによって、よりよい地盤環境の創造に向けた取り組みが前進するものと考える。

参考文献


川端・今立・佐藤他（2000）：油汚染土壌処理の課題と気泡流体法による現場処理事例、土壌環境センター技術ニュース、Vol.1

川端・曾我（2001）：均質地盤中のLNAPLの挙動について（一Np場における浸透実験―）、第36回地盤工学研究発表会講演集

（社）土壌環境センター（1999）：平成10年度「油の暫定処理目標と対策技術調査研究部会報告書」

質疑応答

尾崎（国際航業）：

VOCに関連して、どこで浄化作業を終了させるのか？減衰カーブが寝てきたら、土壌もきれいになったと判断できるのか？

川崎：

非常に難しい話なので、それを今後の課題としていた。減衰の結果はたとえば一つの実験を見ることもできる。すなわち、どこで寝てくるかをみて、汚染サイトを理解するための実験。どれくらい引いたら、寝てくるのかいつ出てくるかが明らかになって、初めてこれくらいの汚染があると理解できる。これで、はらいいのか、まだまだあるのかを判断する。寝てきたときの絶対濃度にもよる。減衰カーブの状況と絶対濃度の2つをつき合わせて、そのまま続けるか、別の手を打つべきかの判断は、なかなか難しい。

諸水（岡山大）：

今の質問に関連するが、まだまだあるかも知れないのに、減衰カーブが寝てくるというメカニズムは？

川崎：

距離の問題もあるが、1つは土層構成による。土層が違うと透水性が違う。透水性によりそのなかにブールされる汚染物質も違う。透水性が高い所は、はやく無くなる。そこが1つのピークかもしれない。さらに（高塚さん）もう1つ透水性の低いところに汚染がブールされていいる場合、汚染が大きいのになかなか出てこない場合がある。