Soil water movement under micro-irrigation using a perforated tube

Shinpei NAKAGAWA*, Katsuyuki SOMA*, Jun’ichi KASHIWAGI* and Shinji SUZUKI*

*Graduate School of Agriculture, Hokkaido University

Abstract

Effects of different initial moisture conditions on the formation of wetted soil volume under micro-irrigation were investigated in a layered soil having a plow layer and a subsoil layer with macropores. Water was applied at a constant rate of 100 cm3 min$^{-1}$ for 720 minutes using a perforated tube covered with vinyl mulch. Water application efficiency was also evaluated from soil water storage and infiltration loss caused by bypass flow.

In the case of initially dry condition, the wetting front was spread in an elliptical shape with the major axis in the downward direction. In the case of wet condition, however, the horizontal boundary between the plow layer having high saturated hydraulic conductivity and the subsoil layer having low one affected infiltration. Water reached to the boundary flowed horizontally and infiltrated into the plow layer from the bottom. The amount of water infiltrated vertically was more than that of horizontally infiltration in an imaginary main root zone. Infiltration loss beyond the root zone due to bypass flow was accounted for 89% in dry condition and 75% in wet condition for 720 min respectively. After 70 min irrigation, the rate of storage was unchanged in both the dry and the wet conditions. In view of water application efficiency, irrigation period exceeding about 70 minutes is inadequate.

Key words: Micro irrigation, Perforated tube, Wetted soil volume, Bypass flow, Water application efficiency

1. はじめに

作物の根群域へ少量ずつ頻繁に供給する方法であるマイクロ灌漑は、灌漑によって水分が増加する湿潤域と水分が増加しない非湿潤域が形成されるため、従来の全面灌漑と異なる灌漑計画が必要となる。湿潤域は供給条件（供給量、供給強度）や土壌条件（土壌構成、初期土壌水分分率）等の影響を受けて形成され、形状や大きさ、水分分布から特徴づけられている。

マイクロ灌漑に関する既往の研究は灌漑強度の小さい点点灌漑を扱ったものがほとんどである。点点灌漑による湿潤域の形成については解析法（Philip, 1971; Warrick, 1974）や数値解析（Brandt, et al., 1971; Lafolie, et al., 1989; 田中ら, 1992）によって解析されてい。数値解析では対象とする土壌の任意の物理条件を組み入れることが可能であり、再現性和適用性の高い方法である。Bresler, et al. (1971) は点点灌漑による2次元、3次元の水分移動を数値解析によって予測し、実測値との比較を行った。その結果、大きな灌漑強度の場合を除いて良く一致したと報告している。しかしこれらの研究では灌漑強度の小さな点点灌漑を想定したもののがほとんどであり、多孔ホースのような強度が大きいものではない。

冬期にヒーティングハウスを解体する北海道のような積雪地域では、期間定置式で敷設が容易な多孔ホースが適しており、施設園芸において広く用いられている。多孔ホースを用いたマイクロ灌漑は給水源の水圧によっ

飲水から点点まで灌漑形態が変化する。マルチ被覆下

* 北海道大学大学院農学研究科 〒060-8580 札幌市北区北9条西9丁目
キーワード：マイクロ灌漑、多孔ホース、湿潤域、バイパス流、灌漑效率
ではホース付近にのみ水を供給する部分灌漑のように用いられており、通常、点滴灌漑に比べて灌漑強度は大きい。

したがって、多孔ホースにより適正な水管理を行うためには温溼域の形成を十分に把握する必要がある。本論文では点滴灌漑のように温湿状態で灌水制御した場合、乾燥時の灌水と比較して、灌漑効率がどのように変化するかについて検証した。灌漑管理によって形成された膨軟な作土をもつ成層土壌において、マルチ被覆下で多孔ホースを用いた灌漑を行った場合に、灌漑前の初期水分が温湿域の形成に与える影響について検討した。また、主根群から鉛直下方と側方への浸透損失を見積ることで灌漑効率に対する初期土壌水分の影響についても検討を試みた。

2. 実験方法

2.1 調査地の概要と測定項目

試験地は北海道大学北方生物圏フィールド科学センターの生物生産研究農場内のガラスハウスにおいて行った。土壌は豊平川由来の堆積物を母材とする褐色低地土で、層序は A_s、A_r、2A 層から成り、腐植土に戻る。ガラスハウスでは毎年、春から夏にセリを栽培しており、試験はセリを収穫後にロータリ攪拌耕起された裸地状態で行った。

試験圃場の土壌物理性については、耕栽培後のホース栽培から各層につき5個の試料を100 cm³円筒容器に採取し、室内において飽和透水試験および基盤的な物理性を測定した。また、保水性は50 cm³の円筒容器を用いて各層から2個の不擾乱土壌試料を採取し、吸引法および加圧法により98.1 kPa まで測定した。さらに、直径10 cm、高さ4 cm の不擾乱試料を採取し、飽和透水試験のほか加圧型定常法により、67 kPa までの不飽和透水試験を行った。飽和および不飽和透水試験に供した土壌は、いずれも鉛直方向で採取したものを利用した。浸入現象に対して保水性および透水性は温湿域過程を考える必要があるが、ヒステリシスを考慮せず、いずれも脱水過程についてのみ行った。また、保水試験の試料に先立ち、マクロボアの分布状況を確認するため、成岡（1987）の方法に従い、造影剤を用いずに土壌の素 X 線撮影を行った。

2.2 灌水試験の概要

多孔ホースを用いた灌水方式による温湿域の形成はホースにあけられた滴下孔の個数、配置数に影響を受ける。多孔ホースはビニール管のホースに並列や二段階で任意の間隔で滴下孔を配置している。図1に示すように、本試験で用いた多孔ホースは挿入したときの幅が5 cm、滴下孔は半円に並列2孔が約20 cm 間隔に配置されている。試験では滴下孔が上向きになるよう土壌表面に

![Fig. 1 Imaginary root zone at the experimental soil profile.](image-url)
ホースを敷設し、幅300cmのビニールマルチで覆った。この被覆により灌漑水はホース付近に集中した。
多孔孔水遮蔽による土壌水分の変化を追跡するために、テンシオメータを埋設し、マトリックポテンシャルを測定した。図1にテンシオメータ設置地点を示す。溝面が土壌断面内でホースを中心に形成されると想定し、土壌水分の測定は滴下孔下の鉛直土壌断面を対象とし、ホースから水平方向に40cm、鉛直方向に55cmの範囲においてテンシオメータを格子状に設置した。なお、テンシオメータの設置にあたっては調査断面から30cm離れた場所に観測孔を設け、水平方向に挿入した。テンシオメータによるマトリックポテンシャルの測定は圧力トランスデューサを用い、データロガーに接続して2分毎に自動計測した。また、灌漑水は水道からホースに接続し、蛇口を最大に開けて供給した。この供給方法による灌漑水は流量計により測定したところ1孔からの流量が50cm³min⁻¹、すなわち1地点に100cm³min⁻¹の一定強度であった。野菜類へのドリップ灌漑の強度は2〜4Lhr⁻¹が適用されているのに対して、今回の試験の100cm³min⁻¹（6Lhr⁻¹）はそれよりも大きな強度である。灌漑時間は100cm³min⁻¹で供給した場合の定常状態の溝面域について検討するため720分間行った。
試験は深さ5cmのマトリックポテンシャルが-49.1kPaの乾燥状態と-4.9kPaの湿潤状態である2種の初期水分条件で行った。-4.9kPaは圃場容水量に相当することからも湿潤状態の限界として設定した。乾燥状態の試験は耕作後に水分状態で、湿潤状態の試験は乾燥状態の灌漑試験から一週間後に対象領域がほぼ飽和になるまでに浸水してから供試した、ビニールマルチで土壌表面を覆った。その後、深さ5cmのマトリックポテンシャルが約-4.9kPaになった時に同一地点で行った。

3. 結果および考察

3.1 園場の土壌物理環境

表1 試験圃場の土壌物理性

<table>
<thead>
<tr>
<th>Depth cm</th>
<th>Horizon</th>
<th>Texture</th>
<th>Porosity cm³ cm⁻³</th>
<th>Dry bulk density g cm⁻³</th>
<th>Saturated hydraulic conductivity* cm s⁻¹</th>
<th>Unsaturated hydraulic conductivity at -2.9 kPa cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-17</td>
<td>Ap₁</td>
<td>L</td>
<td>0.73</td>
<td>0.69</td>
<td>9.6×10⁻³±2.0×10⁻³</td>
<td>1.3×10⁻⁵</td>
</tr>
<tr>
<td>17-40</td>
<td>Ap₂</td>
<td>L</td>
<td>0.60</td>
<td>0.03</td>
<td>1.4×10⁻³±1.1×10⁻³</td>
<td>3.7×10⁻⁷</td>
</tr>
<tr>
<td>40-59</td>
<td>2A</td>
<td>CL</td>
<td>0.60</td>
<td>1.03</td>
<td>8.8×10⁻⁴±3.3×10⁻³</td>
<td>5.4×10⁻⁷</td>
</tr>
<tr>
<td>59-76</td>
<td>2AC</td>
<td>SL</td>
<td>0.60</td>
<td>1.09</td>
<td>4.1×10⁻⁴±6.1×10⁻⁴</td>
<td>—</td>
</tr>
</tbody>
</table>

*Geomean±standard deviation

試験圃場の土壌物理性を表1に示す。調査地はローム土壌である。試料採取が耕作直後であるため、ロータリ耕うによりがん化したAp₁層は下層と比較して間隙率が大きく、飽和透水係数は9.6×10⁻³ cm s⁻¹で、透水性も良好であった。下層のAp₂層と2A層は異なる土壌であるが、間隙率、乾燥密度は良く似た値を示した。飽和透水係数はAp₁層が1.4×10⁻³, 2A層が8.8×10⁻⁴ cm s⁻¹で下層ほど小さくなった。さらに、光学X線撮影画像からAp₁層は約5 mmの団粒を持っており、その中に10 mm程度の団粒も含まれていた。またAp₂, 2A層は前作のセリの根痕と推察される鉛直方向への管状孔隙が確認された。また図2より脱水過程の保水性については、Ap₁層は他の2層と比較して-98.1kPaまでの脱水量が大きく、特に-4.9kPaより大きいマトリックポテンシャルに相当する間隙量が多いことが判る。Ap₂, 2A層は良好な形状を示した。圃場容水量である-4.9

国2 ハウス耕土の水分特性曲線

Fig. 2 Water retention curves of the surface soils.
kPaから生長阻害水分点の−98.1 kPaまでを有効水分とした場合の各層の有効水分量は \(A_{P1} \) が0.10、\(A_{P2} \)が0.06、2Aが0.04 cm³であった。

3.2 透水による浸潤域の形成

テンソリオメータによるポテンシャル測定値が初期値よりも増加した時点で、浸潤前線が到達したとみなした。対象領域内において、これらのテンソリオメータが反応するまでの時間分布に関して、浸潤前線の経時変化として図3に示した。初期水分が乾燥状態の場合、浸潤前線は透水開始から10分後には土壌表面付近で水平方向に広がるが、ホース直下では鉛直方向への伸長が卓越していた。その後、浸潤前線は時間とともに鉛直方向に長軸を持つような楕円形状となった。透水終了時点の720分後においてもホースから水平方向に40 cm離れた土壌表面付近は前線が到達していなかった。これに対して浸潤状態の場合、透水開始から15分までは表面付近で水平方向へ拡大し、ホース直下で鉛直方向に長い形状であったが、\(A_{P1} \)と\(A_{P2} \)層の層界が到達した15分以降は層界に沿って水平方向へ拡大した。その結果、\(A_{P1} \)層では水平方向への前線の伸長が見られた。それ以降では、鉛直方向に対して水平方向への前線の拡大速度は小さいものの、120分後には観測断面内全てに前線が到達した。

この様な土壌の乾湿が浸潤域の形成に与える影響をさらに詳細に検討するため、透水期間中のマトリックスポテンシャル分布の経時変化について、乾燥状態の場合を図4に示した。乾燥状態の場合、ホース直下（4a）は土壌表面からマトリックスポテンシャルが増加し、ポテンシャルが増加する領域が時間とともに深くなる。そして、60分後には深さ55 cmまでの全深度で−1 kPa以上の値を示し、透水試験終了時点で維持した。ホースから離れた地点ほどポテンシャルの変化が見られる時間が遅くなることに加え、変化がまるで深さも異なることが認められた。すなわちホースから水平方向に10 cm離れた地点では層界付近の深さ15 cmにおいても早くポテンシャルが増加し、時間の経過に伴い上向きにポテンシャルが増大した（4b）。20 cm離れた地点（4c）では深さ55 cmから順次水分が増加した。ホースから40 cm離れた地点（4d）では透水終了時点の720分後もポテンシャルの増加はほとんどなかった。

これに対して浸潤状態の場合、ホース直下（5a）におけるポテンシャル分布は乾燥状態の場合と同じく土壌表面からポテンシャルが増加した。ホースから10 cm離れた地点（5b）では、18分後には土壌表面付近の深さ5 cmおよび層界付近である15 cmのそれぞれの深さから水分が増加し、それ以後は2方向からの浸潤が重なるように前線が水平方向に拡大した。さらに24分後には深さ35 cmにおいて層間の測定地点よりも早く水分ポテンシャルが飽和した。
図-5 湿潤状態の灌水期間中の水分分布（図中の数字は時間，min）
Fig. 5 Matric potential distributions at several times (min) during the irrigation (wet condition).

3.3 主根群域境界を通過するマトリックス流の経時変化

設置したテンシオメータの測定値から土壤水分ポテンシャル勾配を求め，多孔ホースによって供給された水の大根群域を通過するマトリックス流の経時変化を考えた。

ホースから水平方向に10 cm 離れた地点に作物の株が存在するものとして，主根群域をホースから水平方向に35 cm，鉛直方向に40 cm の境界で囲まれた領域とした（図1）。

土壤中の水分移動は Darcy 則に従うとして，正方形格子上の4点で囲まれた領域のポテンシャル勾配と4点の土壤水分ポテンシャル値によって形成される面の勾配として考えた場合，地形の勾配（野上，1986）を求める場合と同様に求めることができる。隣接する4点の測定地点で囲まれる領域Pの対角線を座標軸とし，それぞれX，Y 軸上のポテンシャル勾配を表す（図6（a））。領域PにおけるX 軸に対して角度θの方向のポ
図-6 領域Pのポテンシャル勾配と座標軸

Fig. 6 Matric potential gradient and axis of coordinate at area P for a grid system.

"i = cosθ + i sinθ" の式で表される。ここで、θは既知であるからiを求まる。さらに、座標系のポテンシャル勾配が得られることにより、領域Pが長方形である場合のポテンシャル勾配の大きさと方向は正方格子の場合と同様の手順で求めることができる。

図-7 不飽和透水係数とマトリックスポテンシャルの関係（線は推定曲線）

Fig. 7 Relationship between hydraulic conductivity and matric potential (Lines indicate van Genuchten’s model).

透水による土壌中の水分移動は脱水過程の水分特性曲線と不飽和透水係数を採用した。室内試験によって得られた不飽和透水係数は-6.7 kPa までしか実測していなかったが、乾燥状態のフラックスを計算するために、不飽和透水係数をvan Genuchten（1980）の式から推定した。図7に透水係数とマトリックスポテンシャルの関係を示す。室内試験によって得られた不飽和透水係数の実測値と推定値はAp1層の高水位を除き良好に一致していた。主根群域の境界面を通過するフラックスを下端および側面の部分ごとに見積もり、その経時変化を図8.6に示した。H1→H5, V1→V5は図1に示す面である。初期土壌水分が乾燥状態にある場合、試験前のフラックスは全測定点で上向きであった。透水によって境界を水平方向に通過するフラックスは最表面のH1を除き、240分以降に下層（H5）から順次徐々に増加した。透水開始後にホームから最も離れた土壌表面（H1）のフラックスは増加しなかった。また、境界を鉛直方向に通過するフラックスにはホーム直下（V1）とホームから水平方向に7.5 cm離れた領域（V2）が同様の変化を示し、6分以降は定常状態になった。ホームから離れるに従い、フラックスの増加が始まる時間が遅くなり、ホームから35 cm離れた地点（V5）は透水開始から鉛直方向の移動はなかった。これに対して、図8の湿潤状態の場合、初期水分状態では全測定点でフラックスの方向は下向きであった。境界側面のフラックスは透水試験開始から20分後に表面（H1, H2）から急激に増加し、120分後には変化がなかった。
図-8 主根群域の境界断面を通過するフラックスの経時変化（乾燥状態）
Fig. 8 Matrix flow passing the horizontal and vertical boundaries of the major root zone (dry condition).

図-9 主根群域の境界断面を通過するフラックスの経時変化（湿潤状態）
Fig. 9 Matrix flow passing the horizontal and vertical boundaries of the major root zone (wet condition).

くなった。フラックスは表層の方が下層（H3、H4、H5）よりも大きく、Ap0とAp1層の境界付近であるH2が最も大きな値を示した。境界底面を通過するフラックスはホース直下から水平方向に15cm離れた領域（V1、V2、V3）までが試験開始から20分後に急激に増加し、その他の領域（V4、V5）も順次増加した。供給源から最も離れたV5の地点を除いて70分後には定常状態になった。

両水分状態での水分移動の傾向は大きく異なる結果となった。つまり、図3の浸潤前線の経時変化からもわかるように、乾燥状態では水平方向よりも鉛直方向の方が大きかった。浸潤前線は幅広く拡大したが、前線到達後の水分の移動は特にホース近傍のV1とV2での鉛直下方への水分移動が支配的であった。これに対して、湿潤状態の場合、境界側面と底面をフラックスの通過が始まる時間と定常状態に到達するまでの時間がほとんど差がなく、供給源から同心円状に水分が移動していることが示された。特に定常状態のときに境界側面を通過するフラックスは境界付近の水平方向の移動（H2）が支配的で、境界の影響が大きく現れた。

3.4 淡水による損失水量の算出
本実験の結果から多孔ホースを用いて浸潤を行った場
表-2 渦水期間中の浸透損失量の比較

<table>
<thead>
<tr>
<th>初期の水分状態</th>
<th>供給水量</th>
<th>HI</th>
<th>VI</th>
<th>VI/HI</th>
<th>S</th>
<th>Pm</th>
<th>Pm/供給水量</th>
</tr>
</thead>
<tbody>
<tr>
<td>干燥</td>
<td>72,000</td>
<td>1</td>
<td>1,508</td>
<td>1,591</td>
<td>6,587</td>
<td>63,904</td>
<td>0.89</td>
</tr>
<tr>
<td>湿潤</td>
<td>72,000</td>
<td>1,852</td>
<td>6,811</td>
<td>4</td>
<td>9,042</td>
<td>54,295</td>
<td>0.75</td>
</tr>
</tbody>
</table>

HI: Horizonal infiltration, VI: Vertical infiltration, S: Storage water, Pm: Bypass flow

合に主根群域から深部および側方への損失水量を推定を試みた。マイクロ浸潤の土壌改良事業指針（1994）によればマイクロ浸潤による湿潤パターンを独立円分布と帯状分布に分類している。本実験の場合、渦水初期において隣り合う渦が多孔の浸潤域の影響を受けない期間の湿潤パターンは独立円分布であるが、図4,5より数10分間の後には両水分状態ともホースから10cm離れた地点の水分ポテンシャルは一定となった。試験で用いた各孔の渦が多孔の浸潤域が約20cm間隔で配置していることから、湿潤パターンは帯状分布である。

渦水初期から湿潤パターンが帯状分布であると仮定し、一地点の渦域から供給される水が形成する浸潤域の影響間隔として、渦が中心としてホースと平行する方向に幅が±10cm、ホースを直行する水平方向に長さ±35cm、深さが40cmの直方体の領域を設定した。渦水試験ではバイパス流の発現を示すようなポテンシャル変化が認められており（図5b）、領域内の水収支を考える場合にはバイパス流を考慮する必要があることから、浸透量はマトリックス流とバイパス流の合であるとした。マイクロ浸潤による水収支は従来の図法の水収支に、根群域と根群域外への鉛直および水平方向の水の移動を考慮する必要がある。さらに、バイパス流による移動を加え、この領域の水収支を次式で表した。

Q = S + E_p + P_p + P_m

ここで、Q: 浸水量（cm³）、S: 領域内の貯留量（cm³）、E_p: 蒸発散量（cm³）、P: 浸透損失量（cm³）で、添え字の v, h, m はそれぞれ鉛直方向のマトリックス流、水平方向のマトリックス流およびバイパス流による浸透を表す。

各項の求め方は次のとおりである。蒸発散による損失は植生がなければ、ビニールマルチにより土壌表面を被覆していることから、無視した。境界を通過する浸透損失量のうちマトリックス流はDarcy則に従うとし、先に求めたフラックスに境界断面積を乗じ、底面を通過するフラックスから深部浸透損失水量、側面を通過するフラックスから側方損失水量を求めた。通過断面積は底面が1,400cm²、側面が1,600cm²である。また、貯留量は渦水前の水分状態との水分ポテンシャルの差を体積含水率に換算して各要素の体積を乘じて求めた。バイパス流による損失は直接求めることが不可能であることから、バイパス流を除き各項を求め、供給量の差として求めた。表2に水平-鉛直方向、バイパス流による浸透損失量、および浸透水に対する割合を示した。乾燥条件では渦水終了時の水平方向への損失量は1cm³と著しく少なかった。両水分状態とも鉛直方向への浸入量が水平方向よりも卓越していた。本実験において設定した根群域からの鉛直方向と水平方向の浸透損失の比は、渦水終了時の720分後の時点で湿潤状態の4に対して乾燥状態が1,591となり、乾燥状態の方が鉛直方向の浸入が卓越するという結果になった。また、720分間の渦水によるバイパス流による浸透損失量は乾燥状態の場合に89%、湿潤状態の場合に75%にも及び、渦水によるほとんどの水がバイパス流として流出した。

図10に渦水期間中の貯留量の変化を示す。試験開始から70分以下、乾燥・湿潤状態とも増加割合は小さくなった。乾燥状態の方は70分以降も緩やかに増加した。
が、浸透状態の方はほとんど変化しなかった。初期水分が少ないと乾燥状態の方が、漏水により貯留量が大きくなると考えたが結果は逆転した。この様に乾燥状態の貯留量が少なくなったのは、100 cm³/min⁻¹という浸透強度ではパイパス流よび基底流出への損失が大きく、貯留にかかるマトリックス流が小さかったために漏水により形成される浸透域が小さかったこと、つまり、ホース近傍に限定されたことと、設定した乾燥状態（−49.1 kPa）と浸透状態（−4.9 kPa）の体積含水率の差がほとんどなかったためである。

本試験の土壌では多孔ホースを用いて長時間の漏水により形成される浸透域を720分まで観察した結果、浸透の効率を考えた場合、漏水時間は基根群域内の水分貯留量の変化が小さくなる70分までで十分であると判断された。70分の浸透により形成される浸透域は、浸透前の土壌水分により大きく異なり、浸透前線の分布も基根群域において浸透域の全域においても基根群域への水分布が十分でなく、70分以内においても鉛直方向への浸透がはやすい。したがって、この様な乾燥状態で多孔ホースを用いた浸透を行う場合、ホースの間隔を広くし、浸透域と基根群域が重複するように作付けする必要がある。また、乾燥状態での水分管理は長時間の漏水により浸透域が拡大するものの、パイパス流による浸透損失が増大し、節水効果というマイクロ灌漑の利点は失われることから、浸透時間は十分限定すべきである。

4. ま と め

初期土壌水分が異なる条件で多孔ホースを用いてマイクロ灌漑を行った場合の浸透域の形状と水分分布を検討した。乾燥条件の場合、長時間の漏水による浸透域は鉛直方向へすみやかに拡大するのに対し、水平方向では、前線の到達および水分の増加はホースから離れるに伴い長時間要した。浸透条件の場合は乾燥状態と比較すると等方向的な浸透域の拡がりが認められたが、透水性が異なる Ap と Ap 深層の細分が浸透域の形成に大きく影響し、表層の浸透域は層界を中心に水平方向に拡大した。基根群域からの漏水の損失を検討したところ、初期水分にかかわらず、ホース近傍の鉛直下方への浸入が卓越していた。浸透状態では時間の浸透により側方および底面の浸透損失が大きかった。また、Darcy 則に従わぬ土壤中の水分移動としてパイパス流による浸透損失を求める。浸透効率の面から考慮した場合、根群域内の水分貯留量がほとんど変化しないで70分までで十分であると考えられる。

ここでは浸透強度の大きい多孔ホースを用いた場合の浸透域の形状について、初期土壌水分が浸透域の形状と水分分布に与える影響を野外実験の結果により検証を行った。多孔ホースのような強度が大きい場合の研究例は少ないから、マクロボアの有無など異なる土壌物理環境で実験を行い、さらに検証を行う必要がある。

謝 詞

本報をとりまとめにあたり、多くのご指摘をいただけた長谷川教授に感謝申し上げます。

引用文献

受稿年月日：2001年7月23日
受理年月日：2002年5月16日